TY - JOUR
T1 - An Undocumented Water Column Sink for Cadmium in Open Ocean Oxygen-Deficient Zones
AU - Janssen, David J.
AU - Conway, Tim M.
AU - John, Seth G.
AU - Christian, James R.
AU - Kramer, Dennis I.
AU - Pederson, Tom F.
AU - Cullen, Jay T.
PY - 2014/5/1
Y1 - 2014/5/1
N2 - Cadmium (Cd) is a micronutrient and a tracer of biological productivity and circulation in the ocean. The correlation between dissolved Cd and the major algal nutrients in seawater has led to the use of Cd preserved in microfossils to constrain past ocean nutrient distributions. However, linking Cd to marine biological processes requires constraints on marine sources and sinks of Cd. Here, we show a decoupling between Cd and major nutrients within oxygen-deficient zones (ODZs) in both the Northeast Pacific and North Atlantic Oceans, which we attribute to Cd sulfide (CdS) precipitation in euxinic microenvironments around sinking biological particles. We find that dissolved Cd correlates well with dissolved phosphate in oxygenated waters, but is depleted compared with phosphate in ODZs. Additionally, suspended particles from the North Atlantic show high Cd content and light Cd stable isotope ratios within the ODZ, indicative of CdS precipitation. Globally, we calculate that CdS precipitation in ODZs is an important, and to our knowledge a previously undocumented marine sink of Cd. Our results suggest that water column oxygen depletion has a substantial impact on Cd biogeochemical cycling, impacting the global relationship between Cd and major nutrients and suggesting that Cd may be a previously unidentified tracer for water column oxygen deficiency on geological timescales. Similar depletions of copper and zinc in the Northeast Pacific indicate that sulfide precipitation in ODZs may also have an influence on the global distribution of other trace metals.
AB - Cadmium (Cd) is a micronutrient and a tracer of biological productivity and circulation in the ocean. The correlation between dissolved Cd and the major algal nutrients in seawater has led to the use of Cd preserved in microfossils to constrain past ocean nutrient distributions. However, linking Cd to marine biological processes requires constraints on marine sources and sinks of Cd. Here, we show a decoupling between Cd and major nutrients within oxygen-deficient zones (ODZs) in both the Northeast Pacific and North Atlantic Oceans, which we attribute to Cd sulfide (CdS) precipitation in euxinic microenvironments around sinking biological particles. We find that dissolved Cd correlates well with dissolved phosphate in oxygenated waters, but is depleted compared with phosphate in ODZs. Additionally, suspended particles from the North Atlantic show high Cd content and light Cd stable isotope ratios within the ODZ, indicative of CdS precipitation. Globally, we calculate that CdS precipitation in ODZs is an important, and to our knowledge a previously undocumented marine sink of Cd. Our results suggest that water column oxygen depletion has a substantial impact on Cd biogeochemical cycling, impacting the global relationship between Cd and major nutrients and suggesting that Cd may be a previously unidentified tracer for water column oxygen deficiency on geological timescales. Similar depletions of copper and zinc in the Northeast Pacific indicate that sulfide precipitation in ODZs may also have an influence on the global distribution of other trace metals.
UR - https://digitalcommons.usf.edu/geo_facpub/1510
UR - https://doi.org/10.1073/pnas.1402388111
U2 - 10.1073/pnas.1402388111
DO - 10.1073/pnas.1402388111
M3 - Article
VL - 111
JO - Proceedings of the National Academy of Sciences
JF - Proceedings of the National Academy of Sciences
ER -