TY - JOUR
T1 - Characterizing a Sea Turtle Developmental Habitat Using Landsat Observations of Surface-Pelagic Drift Communities in the Eastern Gulf of Mexico
AU - Hardy, Robert F.
AU - Hu, Chuanmin
AU - Witherington, Blair
AU - Lapointe, Brian
AU - Meylan, Anne
AU - Peebles, Ernst
AU - Meirose, Leo
AU - Hirama, Shigetomo
PY - 2018/10/1
Y1 - 2018/10/1
N2 - Compared with our understanding of most aspects of sea turtle biology, knowledge of the surface-pelagic juvenile life stages remains limited. Young North Atlantic cheloniids (hard-shelled sea turtles) are closely associated with surface-pelagic drift communities (SPDCs), which are dominated by macroalgae of the genus Sargassum. We quantified SPDCs in the eastern Gulf of Mexico, a region that hosts four species of cheloniids during their surface-pelagic juvenile stage. Landsat satellite imagery was used to identify and measure the areal coverage of SPDCs in the eastern Gulf during 2003-2011 (1323 images). Although the SPDC coverage varied annually, seasonally, and spatially, SPDCs were present year-round, with an estimated mean area of SPDC in each Landsat image of 4.9 km 2 (SD = 10.1). The area of SPDCs observed was inversely proportional to sea-surface wind velocity (Spearman's r = -0.33, p <; 0.001). The SPDC coverage was greatest during 2005, 2009, and 2011 and least during 2004 and 2010, but the 2010 analysis was affected by the Deepwater Horizon oil spill, which occurred within the study region. In the eastern Gulf, the area of SPDC peaked during June-August of each year. Although the SPDC coverage appeared lower in the eastern Gulf than in other regions of the Gulf and the North Atlantic, surface-pelagic juvenile green, hawksbill, Kemp's ridley, and loggerhead turtles were found to be using this habitat, suggesting that eastern Gulf SPDCs provide developmental habitats that are critical to the recovery of four sea turtle species.
AB - Compared with our understanding of most aspects of sea turtle biology, knowledge of the surface-pelagic juvenile life stages remains limited. Young North Atlantic cheloniids (hard-shelled sea turtles) are closely associated with surface-pelagic drift communities (SPDCs), which are dominated by macroalgae of the genus Sargassum. We quantified SPDCs in the eastern Gulf of Mexico, a region that hosts four species of cheloniids during their surface-pelagic juvenile stage. Landsat satellite imagery was used to identify and measure the areal coverage of SPDCs in the eastern Gulf during 2003-2011 (1323 images). Although the SPDC coverage varied annually, seasonally, and spatially, SPDCs were present year-round, with an estimated mean area of SPDC in each Landsat image of 4.9 km 2 (SD = 10.1). The area of SPDCs observed was inversely proportional to sea-surface wind velocity (Spearman's r = -0.33, p <; 0.001). The SPDC coverage was greatest during 2005, 2009, and 2011 and least during 2004 and 2010, but the 2010 analysis was affected by the Deepwater Horizon oil spill, which occurred within the study region. In the eastern Gulf, the area of SPDC peaked during June-August of each year. Although the SPDC coverage appeared lower in the eastern Gulf than in other regions of the Gulf and the North Atlantic, surface-pelagic juvenile green, hawksbill, Kemp's ridley, and loggerhead turtles were found to be using this habitat, suggesting that eastern Gulf SPDCs provide developmental habitats that are critical to the recovery of four sea turtle species.
KW - Sea surface
KW - Remote sensing
KW - Earth
KW - Artificial satellites
KW - Image resolution
KW - Oceanography
UR - https://digitalcommons.usf.edu/msc_facpub/2000
UR - https://doi.org/10.1109/JSTARS.2018.2863194
U2 - 10.1109/JSTARS.2018.2863194
DO - 10.1109/JSTARS.2018.2863194
M3 - Article
VL - 11
JO - EEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
JF - EEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
ER -