TY - JOUR
T1 - Citrate Synthase is a Novel in Vivo Matrix Metalloproteinase-9 Substrate that Regulates Mitochondrial Function in the Postmyocardial Infarction Left Ventricle
AU - De Castro Brás, Lisandra E.
AU - Cates, Courtney A.
AU - DeLeon-Pennell, Kristine Y.
AU - Ma, Yonggang
AU - Iyer, Rugmani Padmanabhan
AU - Halade, Ganesh V.
AU - Yabluchanskiy, Andriy
AU - Fields, Gregg B.
AU - Weintraub, Susan T.
AU - Lindsey, Merry L.
PY - 2014/11/10
Y1 - 2014/11/10
N2 - Aim: To evaluate the role of matrix metalloproteinase (MMP)-9 deletion on citrate synthase (CS) activity postmyocardial infarction (MI). Results: We fractionated left ventricle (LV) samples using a differential solubility-based approach. The insoluble protein fraction was analyzed by mass spectrometry, and we identified CS as a potential intracellular substrate of MMP-9 in the MI setting. CS protein levels increased in the insoluble fraction at day 1 post-MI in both genotypes (p < 0.05) but not in the noninfarcted remote region. The CS activity decreased in the infarcted tissue of wild-type (WT) mice at day 1 post-MI (p < 0.05), but this was not observed in the MMP-9 null mice, suggesting that MMP-9 deletion helps to maintain the mitochondrial activity post-MI. Additionally, inflammatory gene transcription was increased post-MI in the WT mice and attenuated in the MMP-9 null mice. MMP-9 cleaved CS in vitro, generating an ∼20 kDa fragment. Innovation: By applying a sample fractionation and proteomics approach, we were able to identify a novel MMP-9-related altered mitochondrial metabolic activity early post-MI. Conclusion: Our data suggest that MMP-9 deletion improves mitochondrial function post-MI.
AB - Aim: To evaluate the role of matrix metalloproteinase (MMP)-9 deletion on citrate synthase (CS) activity postmyocardial infarction (MI). Results: We fractionated left ventricle (LV) samples using a differential solubility-based approach. The insoluble protein fraction was analyzed by mass spectrometry, and we identified CS as a potential intracellular substrate of MMP-9 in the MI setting. CS protein levels increased in the insoluble fraction at day 1 post-MI in both genotypes (p < 0.05) but not in the noninfarcted remote region. The CS activity decreased in the infarcted tissue of wild-type (WT) mice at day 1 post-MI (p < 0.05), but this was not observed in the MMP-9 null mice, suggesting that MMP-9 deletion helps to maintain the mitochondrial activity post-MI. Additionally, inflammatory gene transcription was increased post-MI in the WT mice and attenuated in the MMP-9 null mice. MMP-9 cleaved CS in vitro, generating an ∼20 kDa fragment. Innovation: By applying a sample fractionation and proteomics approach, we were able to identify a novel MMP-9-related altered mitochondrial metabolic activity early post-MI. Conclusion: Our data suggest that MMP-9 deletion improves mitochondrial function post-MI.
UR - https://digitalcommons.usf.edu/intmed_facpub/47
UR - https://doi.org/10.1089/ars.2013.5411
U2 - 10.1089/ars.2013.5411
DO - 10.1089/ars.2013.5411
M3 - Article
VL - 21
JO - Antioxidants and Redox Signaling
JF - Antioxidants and Redox Signaling
ER -