Abstract
This paper quantifies the temporal pattern of thermal stratification and deoxygenation in Lake Nkuruba, a small (3 ha), deep (maximum depth = 38 m) crater lake in western Uganda. Dissolved oxygen penetrated to an average depth of 9 m and a maximum depth of 15 m below which the lake was permanently anoxic over the 2 years of study. Although surface oxygen levels were correlated with both surface water temperature and rainfall, seasonal cycles of dissolved oxygen were not well-defined and may have been obscured by the high frequency of short-term fluctuations and by inter-annual variations caused by shifts in rainfall. Surface water temperature averaged 23.3±0.7°C (S.D.) and varied directly with air temperature. Both diurnal changes and top-bottom temperature differentials were small averaging 1.7±0.7 °C and 1.6±0.8°C, respectively. Thermal stability ranged from 101.3 to 499.9 g-cm cm -2 and was positively related to surface water temperature suggesting that this small protected lake responds rapidly to short-term meteorological changes. Because contribution to the annual heat exchange cycle was confined to upper waters, the lake's annual heat budget was low, 1,073.8 cal cm -2 yr -1 . However, net primary productivity was relatively high averaging 1.3 g C m -2 d -1 . The region where Lake Nkuruba is situated experienced a very strong earthquake (6.2 on the Richter scale) on 4 February, 1994. Subsequently, water levels dropped markedly in the lake, falling 3.14 m over a 5-month period.
Original language | American English |
---|---|
Journal | Hydrobiologia |
Volume | 385 |
DOIs | |
State | Published - Jan 1 1998 |
Keywords
- Anoxic hypolimnion
- Heat budget
- Hypoxia
- Productivity
- Stability
- Stratification
- Volcanic crater lake
Disciplines
- Earth Sciences