TY - JOUR
T1 - Interaction of 12/15-Lipoxygenase with Fatty Acids Alters the Leukocyte Kinetics Leading to Improved Postmyocardial Infarction Healing
AU - Halade, Ganesh V.
AU - Kain, Vasundhara
AU - Ingle, Kevin A.
AU - Prabhu, Sumanth D.
PY - 2017/1/1
Y1 - 2017/1/1
N2 - The metabolic transformation of fatty acids to form oxylipids using 12/15-lipoxygenase (LOX) can promote either resolving or nonresolving inflammation. However, the mechanism of how 12/15-LOX interacts with polyunsaturated fatty acids (PUFA) in postmyocardial infarction (post-MI) healing is unclear. Here, we reported the role of 12/15-LOX in post-MI cardiac remodeling in a PUFA [10% (wt/wt), 22 kcal]-enriched environment. Wild-type (WT; C57BL/6J) and 12/15-LOX-null (12/15-LOX-/-) male mice of 8–12 wk of age were fed a PUFA-enriched diet for 1 mo and subjected to permanent coronary artery ligation. Post-MI mice were monitored for day 1 or until day 5 along with standard diet-fed MI controls. No-MI surgery mice served as naïve controls. PUFA-fed WT and 12/15-LOX-/- mice improved ejection fraction and reduced lung edema greater than WT mice at day 5 post-MI (P < 0.05). Post-MI, neutrophil density was decreased in PUFA-fed WT and 12/15-LOX-/- mice at day 1 (P < 0.05). Deletion of 12/15-LOX in mice led to increased cytochrome P-450-derived bioactive lipid mediator epoxyeicosatrienoic acids (EETs), i.e., 11,12-EpETrE and 14,15-EpETrE, which were further enhanced by acute PUFA intake post-MI. Macrophage density was decreased in WT + PUFA and 12/15-LOX-/- mice compared with their respective standard diet-fed WT controls at day 5 post-MI. 12/15-LOX-/- + PUFA mice displayed an increased expression of chemokine (C-C motif) ligand 2 and reparative macrophages markers (Ym-1, Mrc-1, and Arg-1, all P < 0.05) in the infarcted area. Furthermore, 12/15-LOX-/- mice, with or without PUFA, showed reduced collagen deposition at day 5 post-MI compared with WT mice. In conclusion, deletion of 12/15- LOX and short-term exposure of PUFA promoted leukocyte clearance, thereby limiting cardiac remodeling and promoting an effective resolution of inflammation. NEW & NOTEWORTHY This study determined that 1) deletion of 12/15-lipoxygenase (LOX) promotes the generation of epoxyeicosatrienoic acids, the cytochrome P-450-derived metabolites in postmyocardial infarction (post-MI) healing; 2) acute exposure of fatty acids to 12/15-LOX-/- mice drives leukocyte (neutrophils and macrophages) clearance post-MI; and 3) metabolic transformation of fats is the significant contributor in leukocyte clearance to drive either resolving or nonresolving inflammation post-MI.
AB - The metabolic transformation of fatty acids to form oxylipids using 12/15-lipoxygenase (LOX) can promote either resolving or nonresolving inflammation. However, the mechanism of how 12/15-LOX interacts with polyunsaturated fatty acids (PUFA) in postmyocardial infarction (post-MI) healing is unclear. Here, we reported the role of 12/15-LOX in post-MI cardiac remodeling in a PUFA [10% (wt/wt), 22 kcal]-enriched environment. Wild-type (WT; C57BL/6J) and 12/15-LOX-null (12/15-LOX-/-) male mice of 8–12 wk of age were fed a PUFA-enriched diet for 1 mo and subjected to permanent coronary artery ligation. Post-MI mice were monitored for day 1 or until day 5 along with standard diet-fed MI controls. No-MI surgery mice served as naïve controls. PUFA-fed WT and 12/15-LOX-/- mice improved ejection fraction and reduced lung edema greater than WT mice at day 5 post-MI (P < 0.05). Post-MI, neutrophil density was decreased in PUFA-fed WT and 12/15-LOX-/- mice at day 1 (P < 0.05). Deletion of 12/15-LOX in mice led to increased cytochrome P-450-derived bioactive lipid mediator epoxyeicosatrienoic acids (EETs), i.e., 11,12-EpETrE and 14,15-EpETrE, which were further enhanced by acute PUFA intake post-MI. Macrophage density was decreased in WT + PUFA and 12/15-LOX-/- mice compared with their respective standard diet-fed WT controls at day 5 post-MI. 12/15-LOX-/- + PUFA mice displayed an increased expression of chemokine (C-C motif) ligand 2 and reparative macrophages markers (Ym-1, Mrc-1, and Arg-1, all P < 0.05) in the infarcted area. Furthermore, 12/15-LOX-/- mice, with or without PUFA, showed reduced collagen deposition at day 5 post-MI compared with WT mice. In conclusion, deletion of 12/15- LOX and short-term exposure of PUFA promoted leukocyte clearance, thereby limiting cardiac remodeling and promoting an effective resolution of inflammation. NEW & NOTEWORTHY This study determined that 1) deletion of 12/15-lipoxygenase (LOX) promotes the generation of epoxyeicosatrienoic acids, the cytochrome P-450-derived metabolites in postmyocardial infarction (post-MI) healing; 2) acute exposure of fatty acids to 12/15-LOX-/- mice drives leukocyte (neutrophils and macrophages) clearance post-MI; and 3) metabolic transformation of fats is the significant contributor in leukocyte clearance to drive either resolving or nonresolving inflammation post-MI.
KW - Cardiac remodeling
KW - Fatty acids
KW - Inflammation
KW - Left ventricle
KW - Leukocytes
KW - Lipid mediators
KW - Lipoxygenase
KW - Myocardial infarction
KW - Neutrophils
KW - Polyunsaturated fatty acids
UR - https://digitalcommons.usf.edu/intmed_facpub/36
UR - https://doi.org/10.1152/ajpheart.00040.2017
U2 - 10.1152/ajpheart.00040.2017
DO - 10.1152/ajpheart.00040.2017
M3 - Article
VL - 313
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
ER -