Abstract
<p> Boron is known to interact with a wide variety of protonated ligands(HL) creating complexes of the form B(OH) <sub> 2 </sub> L <sup> - </sup> .Investigation of the interaction of boric acid and bicarbonate in aqueoussolution can be interpreted in terms of the equilibrium</p><p> B(OH)30+HCO3−⇌B(OH)2CO3−+H2O">B(OH)03+HCO−3⇌B(OH)2CO−3+H2OB(OH)30+HCO3−⇌B(OH)2CO3−+H2O</p><p> The formation constant for this reaction at 25 °C and 0.7 molkg <sup> -1 </sup> ionic strength is</p><p> KBC=[B(OH)2CO3−][B(OH)30]−1[HCO3−]−1=2.6±1.7">KBC=[B(OH)2CO−3][B(OH)03]−1[HCO−3]−1=2.6±1.7KBC=[B(OH)2CO3−][B(OH)30]−1[HCO3−]−1=2.6±1.7</p><p> where brackets represent the total concentration of each indicatedspecies. This formation constant indicates that theB(OH) <sub> 2 </sub> CO3−">CO−3CO3− concentration inseawater at 25 °C is on the order of 2 μmol kg <sup> -1 </sup> . Dueto the presence of B(OH) <sub> 2 </sub> CO3−">CO−3CO3− , theboric acid dissociation constant (K′B">K′BK′B ) in natural seawaterdiffers from K′B">K′BK′B determined in the absence of bicarbonate byapproximately 0.5%. Similarly, the dissociation constants of carbonicacid and bicarbonate in natural seawater differ from dissociation constantsdetermined in the absence of boric acid by about 0.1%. Thesedifferences, although small, are systematic and exert observable influenceson equilibrium predictions relating CO <sub> 2 </sub> fugacity, pH, totalcarbon and alkalinity in seawater.</p>
Original language | American English |
---|---|
Journal | Aquatic Geochemistry |
Volume | 3 |
DOIs | |
State | Published - Jan 1 1997 |
Keywords
- boron
- boric acid
- carbonate
- CO2 system
- complexation
- spectrophotometric pH
Disciplines
- Life Sciences