TY - JOUR
T1 - Observational Requirements for Long-Term Monitoring of the Global Mean Sea Level and Its Components Over the Altimetry Era
AU - Cazenave, Anny
AU - Hamlington, Ben
AU - Horwath, Martin
AU - Barletta, Valentina R.
AU - Benveniste, Jérôme
AU - Chambers, Don
AU - Döll, Petra
AU - Hogg, Anna E.
AU - Legeais, Jean François
AU - Merrifield, Mark
AU - Meyssignac, Benoit
AU - Mitchum, Garry
AU - Nerem, Steve
AU - Pail, Roland
AU - Palanisamy, Hindumathi
AU - Paul, Frank
AU - von Schuckmann, Schuckmann, Karina
AU - Thompson, Philip
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Present-day global mean sea level rise is caused by ocean thermal expansion, ice mass loss from glaciers and ice sheets, as well as changes in terrestrial water storage. For that reason, sea level is one of the best indicators of climate change as it integrates the response of several components of the climate system to internal and external forcing factors. Monitoring the global mean sea level allows detecting changes (e.g., in trend or acceleration) in one or more components. Besides, assessing closure of the sea level budget allows us to check whether observed sea level change is indeed explained by the sum of changes affecting each component. If not, this would reflect errors in some of the components or missing contributions not accounted for in the budget. Since the launch of TOPEX/Poseidon in 1992, a precise 27-year continuous record of sea level change is available. It has allowed major advances in our understanding of how the Earth is responding to climate change. The last two decades are also marked by the launch of the GRACE satellite gravity mission and the development of the Argo network of profiling floats. GRACE space gravimetry allows the monitoring of mass redistributions inside the Earth system, in particular land ice mass variations as well as changes in terrestrial water storage and in ocean mass, while Argo floats allow monitoring sea water thermal expansion due to the warming of the oceans. Together, satellite altimetry, space gravity, and Argo measurements provide unprecedented insight into the magnitude, spatial variability, and causes of present-day sea level change. With this observational network, we are now in a position to address many outstanding questions that are important to planning for future sea level rise. Here, we detail the network for observing sea level and its components, underscore the importance of these observations, and emphasize the need to maintain current systems, improve their sensors, and supplement the observational network where gaps in our knowledge remain.
AB - Present-day global mean sea level rise is caused by ocean thermal expansion, ice mass loss from glaciers and ice sheets, as well as changes in terrestrial water storage. For that reason, sea level is one of the best indicators of climate change as it integrates the response of several components of the climate system to internal and external forcing factors. Monitoring the global mean sea level allows detecting changes (e.g., in trend or acceleration) in one or more components. Besides, assessing closure of the sea level budget allows us to check whether observed sea level change is indeed explained by the sum of changes affecting each component. If not, this would reflect errors in some of the components or missing contributions not accounted for in the budget. Since the launch of TOPEX/Poseidon in 1992, a precise 27-year continuous record of sea level change is available. It has allowed major advances in our understanding of how the Earth is responding to climate change. The last two decades are also marked by the launch of the GRACE satellite gravity mission and the development of the Argo network of profiling floats. GRACE space gravimetry allows the monitoring of mass redistributions inside the Earth system, in particular land ice mass variations as well as changes in terrestrial water storage and in ocean mass, while Argo floats allow monitoring sea water thermal expansion due to the warming of the oceans. Together, satellite altimetry, space gravity, and Argo measurements provide unprecedented insight into the magnitude, spatial variability, and causes of present-day sea level change. With this observational network, we are now in a position to address many outstanding questions that are important to planning for future sea level rise. Here, we detail the network for observing sea level and its components, underscore the importance of these observations, and emphasize the need to maintain current systems, improve their sensors, and supplement the observational network where gaps in our knowledge remain.
KW - sea-level change
KW - satellite altimetry
KW - GRACE (gravity recovery and climate experiment)
KW - Argo float array
KW - sea level budget
UR - https://digitalcommons.usf.edu/msc_facpub/1378
U2 - 10.3389/fmars.2019.00582
DO - 10.3389/fmars.2019.00582
M3 - Article
VL - 6
JO - Frontiers in Marine Science
JF - Frontiers in Marine Science
ER -