Abstract
Accurate predictions of the transport and fate of oil spilled in the marine environment are essential for response and mitigation efforts. The sedimentation of oil-associated marine snow (MOS) has been shown to be an important pathway by which Deepwater Horizon (DWH) oil was removed from the water column; thus, information is needed on the vertical and lateral dispersion of MOS. Here, we simulated the physical environment in the NE Gulf of Mexico using the Connectivity Modeling System (Paris et al., Environ Model Softw 42:47–54, 2013). Field measurements of marine snow provided initial conditions for the simulations. High Mississippi River (MR) discharge during 2010 and 2013 resulted in strong eastward flowing fronts along the shelf break to the east of the MR, and an anticyclonic eddy at the shelf break retained and aggregated particles, which acted to enhance MOS sedimentation. Forward simulations suggested that particles with high sinking rates (200 m d−1) reached the seafloor within
Original language | American English |
---|---|
Title of host publication | Scenarios and Responses to Future Deep Oil Spills: Fighting the Next War |
DOIs | |
State | Published - Jan 1 2020 |
Keywords
- Deepwater Horizon oil spill Marine snow
- Marine oil snow (MOS)
- Ocean circulation
- Fate of oil
Disciplines
- Life Sciences
- Marine Biology