TY - JOUR
T1 - Three-dimensional Inversion of the Magnetic Field Over the Easter-Nazca Propagating Rift near 25°S, 112°25′W
AU - Sempere, Jean-Christophe
AU - Gee, Jeff
AU - Naar, David F.
AU - Hey, Richard N.
PY - 1989/1/1
Y1 - 1989/1/1
N2 - The Easter microplate boundary configuration is being reorganized by rift propagation. A Sea Beam survey of the Easter-Nazca spreading center, which forms the eastern boundary of the microplate, has revealed the presence of a young propagating rift growing northward (Naar and Hey, 1986). The tip of the propagating rift is associated with a high-amplitude positive magnetic anomaly. We have performed a three-dimensional inversion of the magnetic field over the propagating rift tip area. The magnetization solution suggests that the western and eastern pseudofaults strike 014° and 338°, respectively, and converge near the rift tip. These orientations yield a propagation to spreading rate ratio of 1.5, slightly higher than the estimate of Naar and Hey (1986). Using the revised estimate of the full spreading rate along the Easter-Nazca spreading center near 25°S (80 mm/yr) (D. F. Naar and R. N. Hey, unpublished manuscript, 1989), we obtain a propagation rate of 120 mm/yr. Within 27–30 km of the rift tip, the propagating rift curves by about 15° to the east toward the failing rift, probably as a result of the interaction between the two offset spreading centers. As at the Galapagos propagating rift, rift propagation appears to be a very orderly process along the Easter-Nazca spreading center. The magnetization distribution that we obtain exhibits a high at the propagating rift tip. At other large ridge axis discontinuities, similar magnetization highs have been interpreted as being the result of the eruption of highly differentiated basalts enriched in iron. The origin of the high magnetization zone in the case of the Easter-Nazca propagating rift near 25°S may be more complex. Preliminary rock magnetic measurements of basalts recovered in the vicinity of the propagating rift confirm the presence of highly magnetized basalts but suggest that the relationship between high magnetization intensities and high Fe content is not straightforward.
AB - The Easter microplate boundary configuration is being reorganized by rift propagation. A Sea Beam survey of the Easter-Nazca spreading center, which forms the eastern boundary of the microplate, has revealed the presence of a young propagating rift growing northward (Naar and Hey, 1986). The tip of the propagating rift is associated with a high-amplitude positive magnetic anomaly. We have performed a three-dimensional inversion of the magnetic field over the propagating rift tip area. The magnetization solution suggests that the western and eastern pseudofaults strike 014° and 338°, respectively, and converge near the rift tip. These orientations yield a propagation to spreading rate ratio of 1.5, slightly higher than the estimate of Naar and Hey (1986). Using the revised estimate of the full spreading rate along the Easter-Nazca spreading center near 25°S (80 mm/yr) (D. F. Naar and R. N. Hey, unpublished manuscript, 1989), we obtain a propagation rate of 120 mm/yr. Within 27–30 km of the rift tip, the propagating rift curves by about 15° to the east toward the failing rift, probably as a result of the interaction between the two offset spreading centers. As at the Galapagos propagating rift, rift propagation appears to be a very orderly process along the Easter-Nazca spreading center. The magnetization distribution that we obtain exhibits a high at the propagating rift tip. At other large ridge axis discontinuities, similar magnetization highs have been interpreted as being the result of the eruption of highly differentiated basalts enriched in iron. The origin of the high magnetization zone in the case of the Easter-Nazca propagating rift near 25°S may be more complex. Preliminary rock magnetic measurements of basalts recovered in the vicinity of the propagating rift confirm the presence of highly magnetized basalts but suggest that the relationship between high magnetization intensities and high Fe content is not straightforward.
UR - https://digitalcommons.usf.edu/msc_facpub/2240
U2 - 10.1029/JB094iB12p17409
DO - 10.1029/JB094iB12p17409
M3 - Article
VL - 94
JO - Journal of Geophysical Research: Solid Earth
JF - Journal of Geophysical Research: Solid Earth
ER -