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Variation in Sulfur Dioxide Emissions Related to Earth Tides, 
Halemaumau Crater, Kilauea Volcano, Hawaii 

CHARLES B. CONNOR, 1 RICHARD E. STOmER, AND LAWRENCE L. MALINCONICO, JR. 2 

Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 

Variation in SO 2 emissions from Halemaumau crater, Kilauea volcano, Hawaii is analyzed using a set of 
techniques known as exploratory data analysis. SO 2 flux was monitored using a correlation spectrometer. A total 
of 302 measurements were made on 73 days over • 90-day period. The mean flux was 171 t/d with a standard 
deviation of 52 t/d. A significant increase in flux occurs during increased seismic activity beneath the caldera. SO9. 
flux prior to the this change varies in a systematic way and may be related to variation in the tidal modulatior' 
envelope. 

INTRODUCTION 

Daily SO 2 flux is considered to reflect the state of activity of a 
volcano and increases by orders of magnitude during and often 
prior to eruptions [Menyailov, 1975; Malinconico, 1979; Stoiber et 
al., 1980]. Most studies of daily variation of SO 2 flux describe a 
constant flux with random departures from the mean. Changes in 
activity are denoted by nonrandom departures [Greenland et al., 
1985; Stoiber et al., 1986]. In this study, SO 2 flux was measured 
several times daily at Halemaumau crater, Kilauea volcano, Hawaii, 
over a period of several months (Figure 1). Exploratory data 
analysis techniques [Tukey, 1977; Cleveland and Kleiner, 1975; 
Kleiner and Graedel, 1980] reveal systematic variations in SO 2 flux 
that are smaller than changes attributable to changes in the level of 
volcanic activity. The departures from the mean flux can be 
correlated with oscillation in stress induced by Earth tides. Other 
observed changes in SO 2 flux during the time interval of the study 
can be related to concomitant changes in seismic activity. 

Many authors have noted a correlation between volcanic 
eruptions and Earth tides [Eggers and Decker, 1969; Hamilton, 
1973; Johnston and Mauk, 1972; Mauk and Johnston, 1973; 
Golombek and Carr, 1978; Maul:, 1979] and volcanic earthquakes 
and tides [Mauk and Kienle, 1973; McNutt and Beavan, 1981]. 
Stoiber et al. [1986] related nonrandom variation in SO 2 flux from 
M•aya volcano, Nicaragua, to gas bursts triggered by tides. 
Sugisaki [1981] noted a correlation between fides and variation in 
He/Ar in gas bubbles along active faults. A correlation between 
Earth fides and the frequency of geyser eruptions has also been 
identified [Rhinehart, 1976]. At Kilauea volcano, Brown [1925] 
discovered that the level of Halemaumau lava lake, present earlier 
this century, rose and fell in response to lunar tides. Dzurisin 
[1980] found that eruptions of Kilauea tend to occur at fortnightly 
tidal maxima. Dzurisin eta/. [1984] found that tilt measurements at 
the volcano had a pronounced oscillation corresponding to 
fortnightly tidal period over several months in 1980. Therefore we 
hypothesized that Earth fides may cause variation in SO 2 flux from 
Kilauea. 
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Remote correlation speclxometry is commonly used to estimate 
SO 2 flux from volcanoes [Stoiber and Jep$on, 1973; Malinconico, 
1979; Haulet et al., 1977; Stoiber et al., 1983; Williams et al., 
1986]. SO 2 measurements were made at Halemaumau crater on 73 
days between June 10 and September 12, 1979, using a Barringer 
COSPEC IV following the methods of Malinconico [1979]. A total 
of 302 measurements were made during this time. Data were 
collected between 0900 and 1500 local time; usually four 
measurements of flux were made per day. 

The mean flux between June 10 and September 12 was 171 t/d 
with a standard deviation of 52 fid. This flux is typical for Kilauea 
[Stoiber and Malone, 1975; Stoiber et al., 1979; Greenland et al., 
1985; Gerlach and Greaber, 1985], although it is relatively small for 
an actively degassing volcano [Stoiber and Jepson, 1973; Williams 
et al., 1986; Stoiber et al., 1987]. According to the model of 
Gerlach and Greaber [1985] for the degassing of Kilauea, this SO 2 
is a constituent of "chamber" gas, representing volatile loss as a 
parental magma equilibrates with reservoir magma between 1 and 6 
km beneath the caldera, as opposed to degassing associated with 
eruptive activity. 

Because variance in SO 2 flux is greater on days having a higher 
mean flux, the ln(SO2) was calculated; a scatter plot of ln(SO2) 
over time is given in Figure 2. Moving statistics [Cleveland and 
Kleiner, 1975] werO adopted to search for structure in this data set. 
This method is used because it provides a robust/resistant method 
of assessing data in which noise is high compared to the signal and 
the density of sampling points varies with time [Kliener and 
Graedel, 1980]. Both of these features are present in the SO 2 flux 
data. 

Three moving statistics are used to enhance the scatter plot. 
These are the midmean [Tukey, 1977] and the lower and upper 
semimidrneans [Cleveland and Kleiner, 1975]. For a given flux 
value X r the midmean is the average flux for the r samples collected 
closest in time to X r and which fall between the upper and lower 
quartiles of the probability distribution for these r flux values. The 
lower and upper semimidmeans are means calculated using flux 
values less than and greater than the median flux of r samples, 
respectively. As with all moving average techniques, the degree of 
smoothing depends on r, the number of adjacent points used to 
Calculate the moving statistics. There is no set criteria for selecting 
r, and in practice, several values of r are used [Cleveland and 
Kleiner, 1975]. Structure in the data is enhanced using these 
moving statistics because, for example, the midmean resists 
variation produced by extreme values and rapid flucutations. 

We chose values of r ranging from 4 to 40 sample points. Rapid 
fluctuations in SO 2 flux dominate the time series when little 
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Fig. 1. Kilauea caldera and associated structures. SO 2 flux from within Halemaumau crater and the immediately surrounding areas 
was measured. Fault scarps and crater rims are indicated by hachured lines; wind direction is indicated by the shaded arrow. 
Measurements were co11• along the crater rim road between A and A'. 

smoothing is done (e.g. r = 12). Variation is characterized by 
spikes, and little or no long-wavelength variation can be discerned. 
The spikes disappear when a slightly larger smoothing factor is 
used (r - 18) (Figure 2). At this level of smoothing, several 
longer-wavelength variations are clear, such as a broad peak in flux 
around day 30, with two smaller peaks on either side, and a rapid 
increase in flux near day 52. Following day 52, the midmean 
ln(SO2) is generally larger than it was earlier in the time series. The 
upper semimidmean also increases during this period. The lower 
semimidrnean is not consistently larger, indicating that after day 52, 
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Fig. 2. Scatter plot of In(SO2) over time with the moving statistics (r=-I 8) 
superimposed: top curve, upper semimidmean; middle curve, midmean; 
botum• curve, lower semimidmean. Time is in days since June 10, 1979. 

$0 2 flux is generally greater but occasional readings are low. 
Long-wavelength variation persists even at large smoothing factors 
(e.g. r = 36); the broad peak around day 30 and the increase in $02 
flux initiated by the rapid increase in flux around day 52 are still 
evident. 

Temporal variation in the midmean ln(SO2) flux, calculated 
vertical tidal acceleration, and the frequency of earthquakes beneath 
Kilauea caldera are compared in Figure 3. Although Kilauea did not 
erupt during the sampling period, there was a dramatic increase in 
seismic activity in early August (day 52), which has been 
interpreted to be related to the Mumsion of a dike at depth (R.W. 
Decker, personal communication, 1987). As noted above, there is 
an increase in SO 2 flux during this same period. The flux prior to 
day 52 was less than after day 52, inclusive, with >99% 

High SO 2 values, however, do not always occur on the same day 
as earthquake swarms. This results in a relatively low correlation 
between SO 2 flux and earthquakes; r = 0.21 for short-period 
earthquakes and r = 0.26 for long-period earthquakes. These 
correlations do not improve by lagging the midmean ln(SO2) with 
respect to earthquakes or vice versa. This change is seismicity 
effectively subdivides the data set into flux values collected prior to 
the onset of seismic swarms and measurements collected after the 

onset of seismic swarms on day 52. 
The ln(SO2) and the midmean of ln(SO2) flux were each 

compared with several aspects of Earth fides. These include the 
magnitude of the total vector and the vertical component of tidal 
acceleration at the time of measurement and the range of these 
measures over the previous 6, 12, and 24 hours. The derivatives of 
the horizontal components of tides across the caldera at azimuths 
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Fig. 3. C(xnp•s• of the midmean ln(SO 2) for r = 18 with tidal oscillation, 
calculated by differencing the largest and smallest upward tidal acceleration 
during the tidal day, the total upward acceleration, calculated at hourly 
intervals, and short- and long-period earthquakes. Time is in days since 
June 10, 1979. 

ranging from east-west to north-south at 2 ø intervals, and the ranges 
of these were also compared with SO 2 flux. These calculations 
were made for the entire time series, the time series prior to day 52, 
and the seri• from day 52 onward. All tidal calculations were made 

following the methods of Longman [1959] and Pollack [ 1973]. 
The range of tidal acceleration was determined by differencing the 

maximum and minimum acceleration occurring within a given 
interval. The tidal oscillation is modulated at approximately 14-day 

wavelengths but is not produced by the Mf and M m tidal waves, 
which are fortnightly and monthly lunar waves, respectively 
[Melchoir, 1978]. Generally, the tidal modulation envelope is out of 

phase with M[and M m, and Mfand M m have very small amplitudes 
relative to me tidal modulation envelope. The modulation is 
produced by the addition of the M 2 and S 2 semidiurnal waves, and 
the semidiurnal lunar elliptic, N 2. Since M 2, S 2, and N 2 have 
slightly different frequencies, a long wavelength modulation 
develops. Although the modulation is approximately fortnightly, it 
is produced by semidiurnal variations in tidal acceleration. 

McNutt and Beavan [ 1981] successfully related the frequency of 
earthquakes beneath Pavlof volcano to the orientation of the 
horizontal component of tides. In the present study it is found that 
the correlation between flux and the horizontal component of tides 
was low (r = 0.36) and did not improve with changes in 
orientation. 

The coefficients for some of the correlations between SO 2 flux 
and vertical tides are given in Table 1. The largest correlation 
coefficients, r = 0.60, are found by comparing the midmean 
In(SO2) flux prior to the onset of earthquake activity with the scalar 
and with the vertical component of tidal oscillation over a 24-hour 
period. Lagging the midmean ln(SO2) with respect to tidal 
oscillation rapidly reduces this correlation, until the curves are again 
in phase. 

DISCUSSION AND CONCLUSIONS 

Intermittency, turbulence, and puff'mess in the plume [Venkatram, 
1979; Hanna, 1984; Sykes, 1984] and variable wind speed and 
direction [Stoiber et al., 1980] leads to random variations in 
estimates of SO 2 flux. Processes acting on the magma itself, such 
as the development of slugs of gas in the conduit [lmai, 1983], may 
also produce rapid fluctuations in SO 2 flux. Nonetheless, pattern in 

TABLE1. Cxaxelation Coefficients Between SO 2 Flux and Calculated Tides 

N T1 T2 T3 T4 T5 

Total data set 

ln(SO 2) 
Midmean ln(SO 2) 

302 0.06 0.13 0.20 0.16 0.18 

O. 17 0.26 0.38 0.32 0.31 

Data collected before day 52 
ln(SO 2) 
Midmean ln(SO 2) 

183 -0.01 0.09 0.08 0.22 0.24 

0.23 0.45 0.41 0.60 0.61 

Data collected after day 52 
ln(SO 2) 
Midmean ln(SO 2) 

119 O. 17 0.22 0.24 O. 13 0.21 

0.25 0.15 0.34 0.18 0.28 

Linear oor•lation coefficients for In(SO2) flux and the vertical tidal acceleration at the time of measurement (T1), 
range of tidal acceleration over the previous 6 hours (T2), 12 hours (T3), 24 hours (T4), and the range of 
magnitude of the total vector of acceleration over the previous 24 hours (T5). N is the number of samples. The 
midmean is calculated for a smoothing factor of 18 samples. 
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SO 2 flux from Halernaumau crater does emerge through the use of 
exploratory data analysis techiques (Figure 3). 

Brown [ 1925] (also see Shimozuru [ 1987]) observed that the lava 
lake level of Halernaumau crater, molten earlier this century, varied 
with the lunar tide. Furthermore, variations as would be expected, 
increased as the width of the tidal modulation envelope increased. 
When the width of the tidal modulation envelope is small, the 
magma experiences little displacement over time, and any degassing 
which takes place is presumably related to other processes, such as 
the equilibration of parent and reservoir magmas or crystallization. 
When the modulation envelope is wide, daily tidal oscillation is 
high and the rate of change in tidal stress is maximum. Under these 
circumstances the conduit magma has been observed to be displaced 
by as much as 30-60 cm over a 24-hour period [Shimozuru, 1987] 
and changes in the rate of vesiculation probably occur [Huppert et 
a/., 1982; Rymer and Brown, 1987]. This, in turn, should increase 
the rate of degassing. 

Changes in the midmean ln(SO2) of the order of 40 t/d were 
observed near days 15 and 45, and 70 t/d on and around day 30 
(Figure 3). The correlation between the midmean.In(SO2) flux (r = 
18) and the daily tidal oscillation is not statistically significant, but a 
relationship is suggested by 1) the persistence of variation in the 
midmean ln(SO2) to large smoothing factors, 2) the tendency for 
SO 2 flux to increase when the tidal modulation envelope is large, 
and 3) the decrease in this correlation when the midmean ln(SO2) is 
lagged with respect to tidal oscillation. Degassing increased 
significantly during the second half of the observaton period, 
associated with an increase in seismicity. These observations 
suggest that monitoring SO 2 degassing can, under some 
circumstances, provide valuable information concerning the relative 
movement of magma. 
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