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ARTICLE

Boron isotopes in boninites document rapid
changes in slab inputs during subduction initiation
Hong-Yan Li 1,2,3✉, Xiang Li1,4✉, Jeffrey G. Ryan 5✉, Chao Zhang 6 & Yi-Gang Xu1,2,3

How subduction-related magmatism starts at convergent plate margins is still poorly

understood. Here we show that boron isotope variations in early-formed boninites from the

Izu-Bonin arc, combined with radiogenic isotopes and elemental ratios document rapid (~0.5

to 1 Myr) changes in the sources and makeup of slab inputs as subduction begins. Hetero-

geneous hornblende-granulite facies melts from ocean crust gabbros ± basalts fluxed early

melting to generate low silica boninites. Hydrous fluids from slab sediments and basalts later

fluxed the low silica boninites mantle source to produce high silica boninites. Our results

suggest that initially the uppermost parts of the slab were accreted near the nascent trench,

perhaps related to early low-angle subduction. The rapid changes in slab inputs recorded in

the boninites entail a steepening subduction angle and cooling of the plate interface, allowing

for subduction of slab sediment and basalt, and generating hydrous fluids at lower slab

temperatures.
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Despite over fifty years of studies into the workings of plate
tectonics, the phenomenon of subduction initiation is still
not well understood1–3. How slabs start to subduct,

whether via shallow convergence4 or vertical foundering5,6, to the
point that they begin to interact with the mantle continues to be
debated. The Izu-Bonin-Mariana (IBM; Fig. 1) convergent plate
margin is a unique natural laboratory for the study of subduction
initiation, with well-preserved forearc igneous sequences that
represent the first eruptive products of subduction in this region.
International Ocean Discovery Program (IODP) Expedition 352
recovered a representative suite of the earliest subduction-related
volcanic sequences of the Izu-Bonin subduction system7–9

(Fig. 1). Drillsites nearer the trench (U1440 and U1441) recov-
ered forearc basalts (FAB), while two sites ~15 km inboard from
the trench (U1439 and U1442) recovered boninites and their
high-Mg andesite (HMA) differentiates. Radiometric dates for
FAB are 51.9–51.3 Myr, while boninite dating suggest eruption
very shortly thereafter, at ~51.3–50.3 Myr7. On the JOIDES
Resolution, the Expedition 352 science team used a hand-held
portable XRF (pXRF) instrument to track chemical variations in
the FAB and boninite sections as part of the core logging process,
collecting over 2000 individual measurements10. Recent high
precision shore-based XRF analyses11,12 supplemented by the
shipboard pXRF10 and ICP-AES13 analyses created high resolu-
tion chemostratigraphies for the drilled holes10–13. In the boninite
holes (U1439A, U1439C and U1442A), lavas < ~250 meters below

the seafloor (mbsf) are dominated by high silica boninites (HSB)
and their HMA differentiates, while lavas >250 mbsf are domi-
nated by low silica boninites (LSB) and HMA, with uncommon
appearances of HSB12, consistent with HSB intrusions through
LSB strata.

Boninites are a ubiquitous early IBM volcanic product, which
requires that a chemically highly depleted, shallow mantle source
be fluxed by the slab14. Expedition 352 boninites all have elevated
SiO2 and MgO, and low rare earth element (REE) contents,
consistent with melting of highly depleted mantle4,12,14. The HSB
have higher SiO2 and lower TiO2 at given MgO than the LSB9,12,
pointing to more depleted mantle15. The IBM boninites show
fluid-mobile element (FME) enrichments broadly similar to those
in arc lavas, but are also enriched in key fluid-immobile species
(e.g., Zr and Hf) that suggest the involvement of slab-derived
melts at relatively shallow depths16.

Trace element and radiogenic isotope results indicate little or
no slab influence on the mantle sources of the earliest erupted
Izu-Bonin FAB4,11,17. LSB lavas specifically and boninites more
generally have been interpreted as reflecting slab melt contribu-
tions from Pacific plate crust4,16. Slab sediment-derived isotopic
signatures only become evident in the later erupted HSB4.
However, the specific constituents of the oceanic crust and
lithosphere (altered basalts or gabbros, or lithospheric serpenti-
nite) that contribute to boninite genesis, and the respective roles
of slab-derived fluids and/or melts in the genesis of the HSB
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versus the LSB are still not well understood. These questions are
directly relevant to how forearc magmatism reflects the geometry
of the downgoing slab and its thermal evolution during the
subduction initiation. Of particular importance in this regard is
constraining the slab-to-mantle inputs during subduction initia-
tion, and the mechanisms governing them. The extremely
depleted nature of boninite mantle sources means that even
minor inputs from the downgoing plate should produce strong
geochemical signals. Boron (B), as an endmember trace element
in terms of its extreme mobility off slabs, with clear abundance
and isotopic differences among different slab constituents18,19,
has great potential for tracking these earliest slab-to-mantle
material exchanges.

Here, with new high precision B abundance and B isotope
results, combined with data for other trace elements and with Sr-
Nd-Hf isotopes for Expedition 352 boninites, we show that rapid
temporal changes occur in the slab inputs to the sources of IBM
boninitic magmas, from melts of lower crustal gabbros to fluids
derived from upper crustal basalts and sediments, which provides
insights into the thermal evolution of the slab during the earliest
stages of subduction.

Results
Boron elemental and isotopic compositions of the boninites.
Boron concentrations in Expedition 352 boninites vary by boni-
nite type, with mean LSB at ≈4 μg/g B, and mean HSB at ≈12 μg/g
B (Supplementary Data 1). While the B concentration ranges of
HSB and LSB show some overlap, there are clear distinctions with
respect to MgO and TiO2, suggesting multiple magmatic
sequences with distinct B abundances. Differences in the corre-
lations of B with Ba and other trace elements suggest LSB versus
HSB source differences (Fig. 2). As B, Ba, and Nb are all strongly
incompatible during mantle melting and magma chamber crys-
tallization, B/Nb and Ba/Nb can characterize to a first order the
degree of B and Ba enrichment in the mantle source. δ11B in
Expedition 352 boninites ranges from −1.6‰ to +8.3‰, with
clear differences among sub-suites when linked to B/Nb and Ba/
Nb (Fig. 3a, b). The LSB encompass the full range of boninite δ11B
variation, and show variable B/Nb and Ba/Nb. By contrast, δ11B in
the HSB cluster tightly between −0.2‰ and +1.8‰, and have
uniformly higher B/Nb and Ba/Nb. All HSB, both those recovered
at <250 mbsf and the few that crosscut LSB strata at >250 mbsf,
show closely similar geochemical characteristics, pointing to
similar subduction inputs. The LSB appear to break into high and
low Ba (Ba/Nb) subgroups, based on correlations between Ba and
Nb, Hf, Zr, and Th (Supplementary Fig. S1 and Fig. 4a). No
obvious stratigraphic relationships are evident among the LSB
subgroups (Fig. 1c). The high-Ba/Nb LSB subgroup has an overall
higher δ11B (+0.5‰ to +8.3‰) than do low-Ba/Nb LSB (−1.6‰
to+4.1‰). The δ11B of Expedition 352 boninites overall are lower

than the δ11B range reported for Izu-Bonin-Mariana arc volcanics
(δ11B: +3‰ to +12‰)20–22. In detail, the LSBs, in particular
those with elevated Ba/Nb, show considerable δ11B overlap with
Izu-Bonin volcanic front lavas, while the low Ba/Nb LSBs and all
HSBs are distinctly lower at Ba/Nb ratios 2-20 times lower than
are seen in the arc. While the LSB range to higher δ11B, they have
lower and more uniform 87Sr/86Sr (0.7032–0.7038) than the HSB
(0.7035–0.7048; Fig. 3c).

Boron systematics in subduction versus subduction initiation
settings. The model for B and B isotope systematics in arc
magmatism is distinct among those of lithophile trace elements in
that B is uniquely mobile in hydrous slab-derived fluids at low
temperatures. Thus, slab-related reservoirs produced at low
temperatures, specifically serpentinites derived ultimately from
reactions with seawater (at 4.5 ppm B and δ11B ≈+39.5‰) play
an outsized role in B cycling during subduction, serving as both
the dominant B reservoir, and the “best fit” source for the iso-
topically heavy δ11B signatures seen in many arcs18,19,23. The
involvement of serpentinites in arc magmatism is possible
because in mature subduction systems downgoing plates often
have sufficiently cool thermal structures to permit the deep
subduction of serpentinite along the plate interface and within the
uppermost portions of slab crust and lithosphere, leading ulti-
mately to B enriched, high δ11B eruptive products in arcs. By
contrast, in subduction systems where downgoing plates are
hotter and, usually, younger (e.g., the Cascades, Mexico, Italy),
lavas are much less B-enriched, and often preserve low δ11B
signatures suggesting little to no involvement of serpentinite in
the slab-derived component18.

Subduction initiation as recorded in the IBM system24 reflects
uniquely high temperature, low pressure conditions25, as initial
slab foundering led to extension, asthenospheric upwelling and
melting, resulting first in FAB magmatism and then boninite
magmatism, all occurring in close proximity to the slab edge, such
that shallow, hot mantle depleted by FAB melting was re-melted
due to fluxing by slab-derived inputs4,12,13,16. Hot mantle
conditions near the sinking edge of the downgoing plate are
likely responsible for the generation of melts in the slab crust,
suggested to occur under hornblende-bearing granulite facies
conditions (900–950 °C16,26). Serpentine minerals break down at
<700 °C under low-pressure conditions, and serpentinite decom-
position will release water, which can cause ocean crust to melt at
low temperatures (<750 °C26). Therefore, slab-hosted serpenti-
nites (either crustal or lithospheric) must have been scarce for the
slab to reach higher temperatures before melting to fertilize the
boninite mantle source. It is unlikely that serpentinites could
develop in a nascent subduction interface, given the high
temperature conditions. If they ever existed, they would be likely
to break down well before slab melts could be generated.
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Slab sources for boninite boron in subduction initiation set-
tings. Although δ11B data for ocean crust are limited, there
nonetheless appear to be distinctions in δ11B with crustal
layer27–29: oceanic Layer 2a basalts and diabases vary from
−2.5‰ to +5.4‰, while gabbroic Layer 3 rocks scatter from
−4‰ to +25‰, with consistently lower B/Nb and overall higher
δ11B than Layer 2a altered basalts28 (Fig. 3). Similar patterns have
also been observed in ophiolitic crustal sections30,31. Layer 2a and
Layer 3 are also distinguishable in terms of Sr isotopes, with Layer
3 rocks preserving consistently lower 87Sr/86Sr than Layer 2a
rocks. The combined B and Sr isotopic systematics of oceanic
Layer 3 rocks are consistent with overall lower extents of seawater
alteration than seen in Layer 2a, leading to lower 87Sr/86Sr and
lower B contents; and with exchanges occurring at overall higher
temperatures than in Layer 2a, consistent with greater depth in
the crust, resulting in overall higher δ11B. The δ11B variability in
Layer 3 data points to considerable local variation in the extent of
seawater/rock exchange deeper in the ocean crust, and to the
extreme sensitivity of B isotopes to high B, high δ11B inputs
(seawater at 4.5 ppm B and δ11B ≈+39.5‰, as compared to fresh
Layer 3 rocks at <<1 ppm B and δ11B ≈−7‰19,32).

Ocean crust metamorphic processing during subduction
modifies its mobile element abundances and δ11B. In mature
subduction zones, the δ11B of the altered oceanic crust near the
slab-mantle interface decreases due to early losses of high δ11B
boron to the forearc mantle at shallow depth, as indicated by δ11B
of −6 ± 4‰ of mafic blueschist clasts metamorphosed at ~19 km
depths and 200–350 °C, recovered from serpentinite muds in the
Mariana forearc33. However, during subduction initiation, the
downgoing tip of the slab reaches much higher temperatures,

upwards of ~900 °C at 1 GPa based on recent models25. B, Rb, K,
and Ba concentrations are high in amphibolites in the
metamorphic sole of the Oman ophiolite, suggesting exchanges
with FME-rich fluids during prograde slab metamorphism34. The
Oman amphibolites have elevated δ11B, between −2.3‰ to
+10.8‰, averaging +3.75‰35. Exchanges with deeply derived
amphibolite-facies fluids appear to explain high δ11B signatures
and elevated B/Nb, Ba/Nb and Sr/Nd in the Oman amphibolites,
and this high temperature phenomenon may be characteristic of
subduction initiation generally34. It is also possible that the
breakdown of lithospheric serpentinite underlying downgoing
plate crust could enrich crustal rocks with high δ11B boron in
similar ways, though serpentinites underlying the oceanic crust
may be comparatively less enriched in B than crustal amphibo-
lites, given the strong uptake of seawater-derived B during
alteration of the oceanic crust27,36. Both amphibolite and
serpentinite fluids will heat up when rising, increasing extraction
of FMEs from the crust34,37. So generally, Layer 2a and Layer 3
ocean crustal materials can both provide heavy B during
subduction initiation.

Modern marine sediments are enriched of B, with Izu-Bonin
trench sediments averaging 94.2 μg/g B38, and the majority of
analyzed samples ranging between 70 and 130 μg/g39. Sediment
δ11B ranges from −6.6 to +4.8‰ with significant differences
among constituents, e.g., continental detritus are very low, at −13
to −8‰ while biogenic carbonates vary from +8.0 to +26.2‰39.
The majority (>70%) of sediment-hosted B will likely be removed
from sediments early in subduction by a range of fluid release
phenomena, driven by mechanical compaction, diagenesis and
prograde metamorphism, all at pressures <1 GPa and
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Fig. 3 Boron and strontium isotopes and trace element systematics of the Expedition 352 boninites. Plots of a B/Nb, b Ba/Nb and c 87Sr/86Sri vs. δ11B
for the International Ocean Discovery Program Expedition 352 boninites. Error bars (2σ= 0.6‰) for boninite δ11B represent average whole chemical
process external reproducibility based on duplicate analyses of different digestion of the reference materials and natural samples62. Depleted mid-ocean
ridge basalt mantle (DM32,49,64), Mid-Atlantic Ridge serpentinites65, Izu-Bonin trench sediment28,38,39, upper crust basalts (Deep Sea Drilling Project
Holes 417A, 417D and 418A)28,66, lower crust gabbros (Ocean Drilling Program Hole 735B)28,54, and Izu arc (Ocean Drilling Program Hole 782A tephra)21

data are shown for comparison. Bulk mixing curve between Izu-Bonin trench sediment and upper crust basalt in c is calculated per their chemical
compositions, summarized in Supplementary Table 1. Numbers on the mixing curves denote percentages. Two low-silica boninite (LSB) subgroups are
distinguished by their distinct Ba versus Nb, Zr, Hf, and Th correlations (Supplementary Fig. 1). HSB: high-silica boninite.
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temperature <350 °C in mature subduction zones40–44. Subducted
sediments at ~0.5 GPa and ~300 °C should thus have lower B
abundances (3.4 to 57.4 μg/g) and lower δ11B (−9‰ to
−11.9‰)45 than seafloor sediments. Similarly low B contents
(3.6 to 24.1 μg/g) are observed in subducted sediments from the
Oman metamorphic sole34. Therefore, subducted sediments
should generate isotopically light B inputs during subduction
initiation.

Expedition 352 volcanic rocks show Hf, Nd and Pb isotopic
evidence for a shift from predominantly Indian Ocean-related
mantle sources in early-erupted FAB to sources with a Pacific
Ocean provenance in the boninites, consistent with slab-derived
inputs from Pacific plate crust and lithosphere4. Our data
patterns in Fig. 3 are consistent with these arguments, but
provide more detail as to the likely source contributors. A key
feature of our boninite data is the absence of any positive
correlation between B enrichment and δ11B: the HSB, which have
the highest B/Nb ratios, are among the lowest δ11B lavas, while
the LSB show variable B/Nb ratios and δ11B signatures, ranging
from δ11B lower than any HSB to δ11B >+8‰. These systematics
argue against a controlling role for a high B, high δ11B slab
constituent such as serpentinite. In Fig. 3, our boninite data lie
within the fields for Layer 2a and 3 ocean crustal rocks, and are
largely distinct from the fields for serpentinites, and for Izu-Bonin
arc lavas. The LSB show on average higher δ11B at lower B
enrichments and lower 87Sr/86Sr, consistent with the signatures of
Layer 3 crustal rocks. The LSB mantle source can best be
explained by the involvement of contributions from subducted
Layer 3 gabbros ± less altered Layer 2a basalts, in consideration of
metamorphism effects during subduction initiation. By contrast,
HSB mantle sources appear to be more consistent with

contributions from subducted sediments and/or altered Layer
2a basalt.

Basalt/gabbro melt inputs to the low silica boninite mantle
source. Pearce et al.16 and Li et al.4 proposed melt inputs from
subducting ocean crust with hornblende largely presented as
residual mineral phase to explain decreases in εHfi and enrich-
ments of Zr and Hf in the LSB, as εHfi correlates positively with
measures of Hf enrichment (e.g., Sm/Hf and Ti/Hf). As shown in
Fig. 4a, b, Ba/Nb and Sr/Nd in the low- and high-Ba LSB sub-
groups show inverse correlations with εHfi. The subgroups have
distinctly different Ba/Nb and overlapping, but different δ11B
ranges, and they are not discriminated by Sr/Nd ratios. The
patterns in Fig. 4 suggest that the systematics of B, Ba, Sr and Hf
are broadly similar during the formation of the LSB. As Hf is
uniformly immobile in hydrous fluids, correlations among these
tracers mean that B, Ba, Sr, and Hf must have been added to LSB
sources via the same non-fluid slab input mechanism. Neither
altered basalts nor sediments are a satisfactory source for this LSB
slab component, as both have much higher 87Sr/86Sr (Fig. 3c), as
well as more enriched Pb isotopes4. Less altered basalt and/or
gabbro-derived amphibolites from deeper in the ocean crust are
the most reasonable slab constituent to contribute to the LSB
mantle source.

That our LSB data in Fig. 4a includes low- and high-Ba/Nb
subgroups likely points to the occurrence of multiple fluxing slab
input events, each with different Ba/Nb signatures and different
δ11B (Fig. 5). While the range in δ11B in the low and high Ba/Nb
subgroups shows substantial overlap, lower δ11B in the low Ba/Nb
samples is consistent with inputs from basalts/gabbros that have
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suffered less metasomatism before melting. We have calculated
trace element abundances for mineral-melt assemblages of
representative amphibolite samples from the slab-mantle inter-
face beneath the Oman ophiolite, one with high and one with low
Ba/Nb (samples WT28A-5 and WT3234), under hornblende-
bearing granulite facies of 900 °C and 0.9 GPa. This temperature
is slightly higher than the reported peak metamorphic tempera-
ture of ~825 °C beneath the Oman ophiolite46 but is consistent
with recent modeling by Zhou and Wada25. The chosen pressure
is comparable to the highest equilibrium pressure estimates for
LSB genesis (0.4–0.9 GPa12). The calculations were performed
using Perple_X47: detailed input parameters and outputs are
provided in Supplementary Information. B-Ba-Nb-Sr-Nd-Hf
abundances in the hornblende-bearing granulite melts
(F= ~10%) were calculated from estimated mineral-melt assem-
blages, and the Nb, Nd, and Hf abundances of the “super
composite” composition of ODP Site 80148. B, Ba, and Sr
compositions were scaled to the B/Nb, Ba/Nb, and Sr/Nd of
representative Oman amphibolites (Supplementary Table S1).
Detailed mineral-melt partition coefficients for the elements of
interest are listed in Supplementary Table S2. Mixing arrays
between the hornblende-bearing granulite melts and the depleted
mantle (depleted DMM of Workman and Hart49) were also
calculated assuming εHf= 13 for the granulite melts and
εHf= 19.5 for the depleted mantle (Fig. 4a, b). Our calculations
indicate that 1–10 wt.% melt inputs from basaltic protolith
granulites with high and low Ba/Nb can explain the Ba/Nb - εHf
variations for the two LSB subgroups, but do not explain the Sr/
Nd versus εHf variations, as Sr/Nd is too low (Fig. 4b).

We have also calculated melt compositions derived from
hornblende-bearing granulite with gabbroic protoliths, using the
average gabbro composition of the Atlantis Bank Massif (IODP
Hole U1473A, SW Indian Ridge50; Supplementary Table S1),
scaled to the B/Nb and Ba/Nb variation seen in Oman
metamorphic sole amphibolites. Inputs of melts (3–20 wt.%)
from granulites with oceanic gabbro protoliths generally explain
the Ba/Nb versus εHf variations of the two subroups of LSB
(Fig. 4a). More depleted mantle compositions require smaller
percentage melt inputs12. Sr/Nd ratios of gabbro-derived
granulites are difficult to estimate. Assuming Sr/Nd ratios similar
to their protoliths (average ~4850), the generated melts will have
Sr/Nd comparable to that of basalt-derived high Ba/Nb granulite
melts (Fig. 4b). Thus, melt inputs from gabbroic protolith

granulites, modified by metamorphic fluids with elevated Ba/Nb
and Sr/Nd, may best explain the chemistry of the LSB.

Figure 5 compares our LSB data to calculated mixing arrays
between depleted mantle and hydrous melts of lower crust
gabbros under hornblende-bearing granulite facies conditions. As
the LSB at Ba/Nb >30 have a wide range of δ11B, B isotope
heterogeneity is necessary in the crustal melt inputs. A
hornblende granulite melt component with δ11B between
+0.5‰ and +8.5‰ best fit the Ba/Nb and Ba/Sr versus δ11B
patterns of the high Ba/Nb subgroup LSB (Fig. 5). At 900 °C,
crustal melting could induce at most 5‰ of δ11B fractionation
between the melt and residual slab, assuming isotope fractiona-
tion factors similar to those for fluids and solids, though the
strong B speciation bias in melts would reduce this effect51–53.
Our calculations suggest the melt might at most be ~2‰ higher
in δ11B than its slab source, given B elemental and isotopic mass
balance.

Slab materials with δ11B between −1.5‰ and +6.5‰ best fit
the LSB data in this study. The high and variable δ11B in granulite
melts documented by our LSB results may partly be inherited
from oceanic gabbros before subduction (e.g., ODP Hole 735B
oceanic gabbros have high and variable δ11B from −4.3‰ to
+24.9‰28,54), and this variability may later be reduced and partly
homogenized by fluid losses before melting, and metasomatism
by amphibolite fluid from deeper in the crust and/or fluids
derived from lithospheric serpentinites. The initial melts appear
to come from gabbros, which are deeper than basalts and
sediments in the slab. Melting or dehydration of shallower slab
materials are not evident from the LSB boron and radiogenic
isotope data, indicating that the top of the slab was possibly
scraped off during subduction initiation, exposing the deeper
gabbros ± diabases to the hot mantle wedge.

Basalt and sediment fluid inputs to the high silica boninite
mantle source. The data arrays for the HSB in Fig. 3 differ from
those of the LSB in that δ11B is much less variable, ranging only
from −0.2‰ to +1.8‰, more similar to values for average
altered basalts, and to a lesser extent marine sediments, than to
many of the LSB. In Fig. 3 the HSB data are coincident with Layer
2a and 3 basalts/gabbros, albeit at overall higher B/Nb than either
of these constituents, or of marine sediments. In Fig. 4a, the HSB
appear to plot as an extension of a trend of increasing Ba
enrichment with declining εHfi, defined by the high Ba/Nb LSB
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and the Expedition 352 FAB. However, other mobile elements in
the HSB show different systematics (Fig. 4c, d; Supplementary
Fig. S2), pointing to the involvement of component(s) other than
those responsible for LSB genesis.

The HSB differ from the LSB in that their petrogenesis appears
to involve the mixing of at least two distinguishable slab
components. One slab endmember is a high Ba slab-melt, such
as is evident in the high Ba/Nb LSB. εHfi declines as Ba becomes
more enriched, suggesting a maximum Ba/Nb for this component
where εHfi reaches its lowest, most “Pacific-like” value. Sr/Nd
shows a similar, if more scattered, pattern of increase relative to
εHfi (Fig. 4b), but plotted versus 87Sr/86Sri the HSB trend to
higher Sr/Nd and Sr isotopic ratios from a minimum Sr/Nd of
~50, the median value of our LSB data (Fig. 4c). Increases in B/Nb
and Ba/Nb in the HSB are associated with decreases in δ11B and
εNdi, and with increases in 87Sr/86Sri, suggesting coherent
behavior among B, Ba, Sr and Nd during HSB formation (Fig. 3
and Supplementary Fig. S2). 87Sr/86Sri increases in the HSB occur
at nearly constant to declining La/Sm, while La/Sm varies
markedly in the LSB at near-constant 87Sr/86Sri, consistent with
variable melt inputs from a crustal source (Fig. 4d). εHfi is
uniformly low in the HSB, irrespective of the B/Nb, Ba/Nb, or Sr
and Nd isotopic variations. This apparent decoupling of Hf
isotopes from other tracers, and the patterns seen in mobile
element enrichments and in La/Sm suggest that additional B, Ba,
Sr, and REE inputs to HSB mantle sources may have occurred via
hydrous fluids, in which Hf would be immobile55,56. Hydrous
fluid inputs will decrease Hf/Nd, and greater fluid inputs will
result in higher degrees of melting, that would be reflected in
decreases in Hf/Ti and La/Yb (Supplementary Fig. S2). Slab-
derived fluids will also have higher B/Nb than their protoliths,
consistent with the comparatively high HSB values in Fig. 3a. εHfi
in the HSB thus appears to reflect the same slab contributor seen
in the LSB (i.e., melts from less altered basalt/gabbro), which was
likely pervasive in the LSB residuum that was re-melted to
produce the HSB. The other, more fluid-mobile tracers reflect
new, likely fluid-mediated inputs from different slab contributors.

Bulk mixing calculations based on the HSB data patterns in
Fig. 3 indicate that the highest 87Sr/86Sri HSB sample requires
>10% sediment involvement (Fig. 3c). At >5 wt.% sediments, Pb
isotopes in the HSB become sediment dominated4. Amphibolite
fluids (based on the Oman amphibolites) derived from a
subducted slab with 5–10 wt.% sediments should have Ba/Sr
from 0.26 to 0.3234, similar to the highest values in the HSB
(Fig. 5b). Therefore, an estimate of 5–10 wt.% sediments involved
in the slab inputs to the HSB appears reasonable.

In Fig. 6, Cs/La is negatively correlated with εNdi in the HSB.
As such, the highest HSB Cs/La ratio most closely reflects the slab
fluid signature (Fig. 6). We have calculated the dehydration
temperature of the slab, based on experimental results on marine
sediments from Hermann and Rubatto57. Our peak temperature
estimates are between 780 °C and 840 °C, assuming that altered
basalts and sediments experienced no Cs loss before additions to
the HSB mantle source; as such our temperature estimates are
likely maximum possible values. These estimates are similar to
reported solidus temperature for slab sediments (i.e., <775 ± 25 °C
at 2 GPa, or 810 ± 15 °C at 3 GPa)58, pointing to overall lower
temperature conditions at the plate interface during HSB
generation. At ~800 °C, slab dehydration could induce a
maximum of ~6‰ of δ11B fractionation between the fluid and
residual slab, assuming near-neutral fluid pH values51,52. Given
the lowest HSB δ11B value of ~−0.2‰, the dehydrated slab may
have had δ11B as low as −6‰. Bulk mixing calculations suggest
that a mixture of 5–10 wt.% subducted sediments (B= 31.5 μg/g;
δ11B=−11.2‰45) and 90–95 wt.% of Oman-like amphibolites
(B= 33.3 μg/g; δ11B=+3.75‰34,35) would have δ11B between

+3.2‰ and +2.3‰. These values are higher than our estimated
slab component (<−0.2‰, probably as low as −6‰), and may
point to an overestimate of the B and δ11B in subducted basalts,
indicating the subducted basalts may not have been metasoma-
tized by amphibolite- or serpentinite-derived fluids during HSB
generation.

Discussion
Dating of Izu-Bonin FAB and boninites indicate that early IBM
magmatism evolved from FAB (51.9–51.3 Myr) to boninite
(51.3–50.3 Myr), and thus from ≈0% to significant additions of
slab-derived materials in <2Myr7. Early radiogenic isotope4 and
elemental studies12 have suggested that LSB mantle sources
include melt contributions from oceanic crust, while HSB mantle
sources involving contributions from subducting sediments. Our
new data for Expedition 352 boninites record details about these
early exchanges, which appear to provide insights into physical
constraints on the slab input processes and document rapid
thermal evolution of the slab during subduction initiation. Higher
and more heterogeneous δ11B in the LSB offer evidence the first
slab additions came from less altered oceanic crust, most likely
lower crustal gabbros. Sm/Hf, Ti/Hf4,16 and Ba/Nb ratios in the
LSB place melting temperatures on the slab at 900–950 °C. This
indicates early heating of the nascent slab due to interactions with
upwelling hot mantle. Slab inputs from the upper portions of
Pacific plate crust and sediments appear to have begun later, as
reflected in the compositions of the overlying HSB. Their higher
B and lower, more uniform δ11B are consistent with slab basalt +
sediment contributions most likely via hydrous fluids generated at
~800 °C. This change indicates the start of cooling of the slab-
mantle interface via refrigeration by early subducted crust and
lithosphere. While a small role for B from dehydrated lithospheric
serpentinites in the LSB is not entirely precluded by our results, it
is clear that unlike in mature volcanic arcs, serpentinite does not
play a controlling role in the petrogenesis of either boninite
subtype.
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The comparatively rapid temporal changes in slab inputs
reflected in the Expedition 352 boninites allow us to place tighter
constraints on how the downgoing plate and mantle interact
during subduction initiation (Fig. 7). Slow and shallow early
convergence apparently disrupted the upper portions of Pacific
plate crust, producing a proto-accretionary wedge that included
basaltic crustal rocks as well as sediments. Early slab subsidence

led to mantle upwelling that triggered the eruption of voluminous
FAB, which in their later stages show evidence for some minor
slab influence17. The subducting portion of the downgoing plate
metamorphosed due to burial and contact with hot upwelling
mantle, liberating melts and fluids from its leading edge. As
subduction-driven mantle convection had not started, a trapped
domain of depleted, once-melted mantle (FAB residual mantle)
developed near the slab interface, and the fluxing by hetero-
geneous melts from the gabbroic section of the Pacific slab
modified this trapped mantle and triggered LSB magmatism.
Increasing slab subsidence rates ultimately resulted in whole-plate
subduction, allowing cooler slab crust and lithosphere to pene-
trate deeper into the mantle. The cooling of the subduction
interface likely precluded further crustal melting, but permitted
the generation of hydrous fluids from subducting basaltic crust
and sediments that further fluxed this melt-modified residual
mantle, and resulted in HSB magmatism. As the forearc gradually
cooled, the locus of HSB volcanism appears to have moved
westward, away from the trench, after ~50Myr, consistent with
younger radiometric dates on HSB from the Bonin Islands
(~48–46Myr) and other localities inboard of the Expedition 352
drillsites59–61. Increased sediment subduction combined with a
relatively cooler subduction interface leads to the relatively higher
Cs/La and lower εNdi signatures of Bonin Islands HSB (Fig. 6).
The geometry and character of HSB magmatism, in which slab
fluids trigger mantle melting in a predominantly non-extensional
environment, are similar to what is encountered in volcanic
arcs13. HSB thus appear to represent “last gasp” forearc magmatic
activity, following which the start of subduction-related mantle
convection leads to the development of a cooler, stable forearc.
Slab cooling leads to low temperature hydrous fluid releases,
hydrating the forearc mantle wedge and ultimately producing the
“subduction channel” of disaggregated and serpentinized upper
and lower plate materials along the plate interface, which is
dragged down by the subducting slab to become a high δ11B
component in arc volcanic rocks. Ultimately deeper melting of
fertile mantle wedge materials well inboard from the trench,
triggered via inputs from a deeper slab, produce calc-alkaline arc
lavas in the Izu-Bonin system after 44Myr60.

Methods
Sample selection and preparation. Samples examined in this study were selected
from the working halves of cores for Holes U1439A, U1439C, and U1442A, to
represent both the natural chemical variability of the IODP Expedition 352
boninites and to reflect overall core stratigraphy. Hole 1439C best reflects the
lithologic variability of Expedition 352 boninite and associated differentiates,
comprising nine volcanic units and one basal intrusive unit. The stratigraphy of
Hole U1442A is similar to Hole U1439C but simpler, comprising only four vol-
canic units. Only one volcanic unit (all HSB) was sampled in the three boninite
cores recovered from Hole U1439A12. Therefore, in this study we have investigated
Hole U1439C in the greatest detail. The HSB from <250 mbsf in all three holes are
relatively fresh and show similar geochemical variations4,12. Two U1439A samples
were selected to supplement the HSB samples from Hole U1439C. Four HSB
samples, representing intrusive dikes through LSB sequences from >250 mbsf in
Holes U1439C and U1442A, were identified for analysis via our pXRF
chemostratigraphy10–12, for comparison with the shallower HSB samples. Fresh
LSB were only rarely recovered during Expedition 352, so LSB samples from Hole
U1442A were selected to supplement those from Hole U1439C. Our samples
included fresh boninites selected specifically for this work, and LSB drawn from
larger ‘POOL’ samples, that had been chosen for coordinated post-cruise mea-
surement. The LSB and HSB sample subsets both included some boninitic dif-
ferentiates, properly termed high-magnesium andesites (HMA). For simplicity of
description, we do not discriminate the HMA differentiates from their respective/
parental HSB or LSB. The major and trace element abundances and Sr-Nd-Pb-Hf
isotopic ratios of the ‘POOL’ LSB samples are published in Li et al.4.

Below is a brief summary of the analytical methods and quality controls, which
include B isotopes for the ‘POOL’ samples and trace elements and Sr-Nd-Hf-B
isotopes for the ‘Non-POOL’ samples. All ‘POOL’ samples and a subset of ‘Non-
POOL’ coarse grained samples were leached with 6 M HCl before sample digestion
for B isotope analyses62 to remove seawater-derived B. Leaching experiments done
on our fresh samples resulted in no change in their δ11B, indicating that these
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samples have not been affected by seawater alteration. All δ11B measurements
reported for the ‘POOL’ samples were conducted on leached powders.

Trace elements. Trace element analyses were performed at Guizhou Tongwei
Analytical Technology Co., Ltd. on a Thermal X series 2 ICP-MS equipped with a
Cetac ASX-510 AutoSampler. After digestion, samples were dissolved in 3 ml of a
2M HNO3 stock solution that was then diluted to 4000:1 in 2% HNO3, and spiked
with 12ppb 6Li, 6ppb 61Ni, Rh, In and Re, and 4.5ppb 235U internal standards. The
USGS reference material W-2a was used as reference standard and BIR-1, BHVO-2
and several other reference samples were crosschecked. Instrument drift and mass
bias were corrected using these internal spikes and external monitors. Based on
results for rock standard BIR-1a, the analytical precision for the rare earth elements
(REE) and most of the other species analyzed is ±1–5%.

Sr-Nd-Hf isotopes. Sr-Nd-Hf isotopes were analyzed at the Guangzhou Institute
of Geochemistry, Chinese Academy of Sciences (GIG-CAS). Sr isotopic ratios were
measured on a Thermo Triton TIMS, and 87Sr/86Sr was corrected for instrumental
mass fractionation by normalizing to 88Sr/86Sr= 8.375209. The Sr isotope results
are reported relative to SRM 987 of 87Sr/ 86S= 0.710248. Rock standards BHVO-2
(87Sr/86Sr= 0.703506 ± 5, 2SE), AGV-2 (0.703976 ± 7), JB-3 (0.703432 ± 7), and
W-2A (0.706952 ± 7) were prepared and measured along with the unknowns to
monitor the quality of Sr analyses. We analyzed Nd-Hf isotope ratios on a Fin-
negan Neptune MC-ICPMS. Neodymium and Hf isotope ratios were monitored
and corrected for mass bias using the values of 146Nd/ 144Nd= 0.7219 and 179Hf/
177Hf= 0.7325, respectively. The Nd isotopic ratios are reported relative to 143Nd/
144Nd of JNdi-1= 0.512115. The rock standard BHVO-2 was repeatedly analyzed
with chemical treatment in separated aliquot for each analysis, yielding a results of
143Nd/144Nd= 0.512986 ± 4 (1 SD, n= 2). Analyses of rock standard JB-3 and
W-2A gave 143Nd/144Nd= 0.513043 ± 5 and 0.512529 ± 5 (SE), respectively. The
Hf isotopic ratios are reported relative to 176Hf/177Hf of JMC 14374= 0.282189
(corresponding to JMC475 of 0.282158). Analysis of rock standard BHVO-2 and
BCR-2 yield 176Hf/177Hf= 0.283097 ± 4 and 0.282858 ± 3 (SE), respectively.

B and B isotopes. B and B isotopes were analyzed at GIG-CAS62,63. B con-
centrations for the ‘Non-POOL’ sample was measured on a Varian Vista Pro ICP-
AES, equipped with an HF-resistant Teflon spray chamber and an Al2O3 injector. B
was measured using the 249.772 nm spectral line. B-5, JB-2, JB-3 and JR-2 were
chemically prepared with the samples and used as external standards for calibrating
B concentrations. The analytical precision for our B concentration measurements
was generally better than 5% (RSD). B isotope measurements were performed using
the Finnegan Neptune MC-ICPMS in sample-standard-bracketing (SSB) mode.
NIST SRM 951 dissolved in B-free Milli-Q deionized water was used as the
bracketing standard, and the results of measured samples were expressed as δ11B
relative to SRM 95162. The internal precision for δ11B was better than ±0.05‰
(1SE), and external precision for δ11B is better than ±0.40‰ (1 SD) based on our
long-term results for SRM 951. The standard reference samples B-5, B-6, JB-2,
AGV-2, and JR-2 were repeatedly prepared and analyzed along our unknowns to
monitor the quality of the B isotope measurements. Measured δ11B values for the
reference samples were: AGV-2: −4.36 ± 0.68‰ (2 SD, n= 3); B-5: −4.71 ± 0.49‰
(2 SD, n= 9); B-6:−2.86 ± 0.62‰ (2 SD, n= 9); JB-2:+7.29 ± 0.60‰ (2 SD, n= 9);
JB-3: 6.74 ± 0.09‰ (2 SD, n= 2); and JR-2: 3.10 ± 0.77 ‰ (2 SD, n= 11).

Data availability
The authors declare that the data generated or analyzed during this study are included in
this published article and its Supplementary Information files.
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