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Exploring the Vast Diversity of Marine Viruses
	 by Mya B r e it ba rt,  L u ke R .  T h om p s o n ,  C u rt is  A .  Su t t le  ,  a n d M at t h e w B .  Su ll  i va n

At abundances routinely greater than 

10 million particles per milliliter, viruses 

are the most numerous biological 

entities1 in the oceans. To put the sheer 

abundance of marine viruses in context, 

we note that they contain more carbon 

than 75 million blue whales and, if such 

viruses were joined end-to-end, they 

would stretch further than the nearest 

60 galaxies (Suttle, 2005). While marine 

viruses were first described by Spencer 

(1955), they were largely ignored for 

three decades because of the relatively 

low abundances inferred using culture-

based assays. However, since Bergh et al. 

(1989) recognized their numeric impor-

tance, they have been considered at least 

as abundant as marine microbes, and 

scientists have been characterizing them 

and trying to determine the extent of 

marine viral diversity. Extensive efforts 

have focused on understanding the role 

of viruses in horizontal gene transfer and 

microbial mortality, and on the conse-

quent impacts on microbial abundance, 

diversity, and community structure. 

Here, we review advances in understand-

ing viral diversity and genome evolution, 

and discuss potentially fruitful areas 

for future research. Our emerging view 

of the virosphere, inferred from giga-

bases of sequence data ground truthed 

by model systems in culture, is one of 

immense but finely tuned genetic diver-

sity, where viruses have seemingly end-

less genetic potential, yet clearly are 

maintaining key genetic elements to 

propagate their extraordinary success. 

One focus area is the diversity of 

marine viruses and marine viral com-

munities. Although viruses might defy 

traditional species concepts, it is clear 

that viral genetic diversity is extremely 

high. Mathematical modeling based on 

viral metagenomic data predicts that 

there are hundreds of thousands of viral 

genotypes in the world’s ocean (Angly 

et al., 2006). This may not be surprising 

given that marine microbial prokaryotic 

and eukaryotic diversity is also enor-

mous (e.g., Irigoien et al., 2004; Witman 

et al., 2004; Thompson et al., 2005; 

Worden, 2006), and there are likely to 

be multiple host-specific viruses infect-

ing each marine organism (Moebus, 

1991; Moebus, 1992; Waterbury and 

Valois, 1993; Wilson et al., 1993; Wichels 

et al., 1998; Sullivan et al., 2003). The 

diversity of marine viral morpholo-

gies ranges from a variety of icosahe-

dral tailed phages (Figure 1) (Moebus, 
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1	 Viruses themselves are nonmetabolic (outside of the 
infection process) and lack the standard genetic marker 
(ribosomal RNA) that allows routine genetic compari-
son of known and unknown life forms using the “Tree of 
Life,” so they are often not considered “alive.” The term 
“biological entities” is used to allow classification of 
viruses with other life forms. 

	 . . .65–95% of marine viral metagenomic 

sequences are not similar to previously 

		  described sequences ,  as opposed to ~ 10% 

					     for cellular metagenomic surveys .
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Valois, 1993; Proctor, 1997; Wichels et 

al., 1998; Sullivan et al., 2003) to long 

filamentous viruses (Middelboe et al., 

2003) with particle diameters ranging 

from 25 nm (Schizochytrium single-

stranded RNA virus SssRNAV) (Takao 

et al., 2005) up to ~ 300 nm for a virus 

that infects a marine phagotrophic pro-

tist (Garza and Suttle, 1995). Reported 

marine viral genome sizes range from 

4.4 kilobases (kb) (Tomaru et al., 2004) 

to 630 kb (Ovreas et al., 2003), with 

representative genome sequences avail-

able from cultured isolates from nearly 

the extremes of the observed ranges 

(the 4.4 kb Heterocapsa circularisquama 

virus HcRNAV [Nagasaki et al., 2005a] 

and the 407 kb Coccolithovirus HeV-86 

[Wilson et al., 2005]). Studies target-

ing genes conserved among members 

of a viral group (e.g., g20 and g23 of 

myophages [Fuller et al., 1998; Zhong 

et al., 2002; Marston and Sallee, 2003; 

Filee et al., 2005; Short and Suttle, 

2005], the RNA polymerase of picorna 

viruses [Culley et al., 2003], or the DNA 

polymerase of algal viruses [Chen et 

al., 1996; Short and Suttle, 2002] and 

T7-like podophages [Breitbart and 

Rohwer, 2004]) demonstrate tremendous 

single-gene diversity even within these 

restricted groups of viruses. Thus, viral 

diversity in natural communities is enor-

mous and dynamic as revealed at the 

levels of morphology, single genes, and 

whole genome sizes.

Recently, genomic sequencing of 

marine viral isolates and metagenomic 

sequencing of marine viral communi-

ties has revealed a plethora of previ-

ously unknown viruses. Among cul-

tured marine phage genomes, typically 

between 60% and 80% of the open 

reading frames show no similarity to 

any sequences in GenBank (Paul and 

Sullivan, 2005), while some marine 

viruses infecting protists have almost 

no recognizable similarity to extant 

sequences (Nagasaki et al., 2005b). 

Furthermore, 65–95% of marine viral 

metagenomic sequences are not simi-

lar to previously described sequences 

(Breitbart et al., 2002, 2004; Angly et al., 

2006; Culley et al., 2006), as opposed to 

~ 10% for cellular metagenomic surveys 

(Tyson et al., 2004; Venter et al., 2004), 

suggesting that we have only begun 

to scratch the surface of marine viral 

sequence diversity. 

One of the most striking features of 

this sequence diversity is an abundance 

of viral-encoded genes that were previ-

ously thought to be restricted to cellular 

genomes with metabolic capacity. For 

example, photosynthesis genes, which 

would seem of little use to something 

other than a photosynthetic cell, are 

now thought to be common in cyano-

phages (Mann et al., 2003; Lindell et al., 

2004; Millard et al., 2004; Sullivan et 

al., 2006). Extensive sequencing efforts 

on these core photosystem II reaction-

center genes show that cyanophages 

themselves act as genetic reservoirs for 

their hosts, generating diversity even at 

Figure 1. Electron micrographs of representative ocean cyanobacterial viruses that infect Prochlorococcus 
and Synechococcus. Panels A and B represent the noncontracted and contracted tails of myoviruses, 
respectively. Note that the tails are nonflexible and contain rather conspicuous baseplates and tail fibers. 
Panels C, D, and E represent siphoviruses that contain long, flexible, noncontractile tails. Note the vari-
ability in tail length, tail-terminus structures, and capsid morphology in C and D as compared to E. 
Panel F shows the icosahedral capsids of podoviruses that contain small, noncontractile tails. All black 
scale bars are 100 nm. Photos by M.B. Sullivan, P. Weigele, and B. Ni. Images C and D were originally pub-
lished in Sullivan et al. (2006)
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the level of these globally distributed 

genes (Zeidner et al., 2005; Sullivan et 

al., 2006). Gene-expression studies on 

model phage-host pairs show that both 

messenger RNA (Lindell et al., 2005; 

Clokie et al., 2006) and protein (Lindell 

et al., 2005) are produced from viral 

photosynthesis genes during infection, 

which suggests that they are functional. 

Several other so-called “host genes,” 

thought to be remnants of horizontal 

gene transfer, are present to varying 

degrees in cyanophages (Chen and Lu, 

2002; Mann et al., 2005; Sullivan et al., 

2005) and other marine phages (Rohwer 

et al., 2000; Miller et al., 2003; Lohr et al., 

2005). Some of these genes are conserved 

across multiple phage lineages, such as 

the photosynthesis and carbon metabo-

lism genes, which suggest that these 

genes play critical roles during infection, 

likely augmenting biochemical processes 

at key metabolic bottlenecks (Figure 2). 

For this reason, we suggest the term 

“auxiliary metabolic genes” (AMGs) 

rather than the potentially misleading 

term “host genes” when describing these 

genetic elements. 

Traditionally, it was thought that the 

key role of viruses in microbial food 

webs was as agents of mortality (up 

to ~ 50% of prokaryotes are lysed per 

day by viruses; see reviews in Fuhrman 

[1999] and Weinbauer [2004]). However, 

the role of viruses in host metabolism 

is perhaps even more important. It is 

now recognized that marine viruses rou-

tinely procure AMGs to tap into critical, 

rate-limiting steps of host metabolism 

during infection (Sullivan et al., 2006; 

Angly et al., 2006). Such AMGs are not 

random evolutionary noise, but rather 

entrenched parts of viral genomes, akin 

to nucleotide-metabolism genes long 

known in coliphages (e.g., ribonucleo-

tide reductase in T4-like phages), and 

are likely critical to the success of cer-

tain viruses in the marine environment. 

The impact of the role played by viruses 

is particularly important in environ-

ments where viral hosts have global-scale 

distributions (e.g., the ocean); here, 

viruses are likely modulating the biogeo-

chemical cycles that run the planet.

As evidenced by work on photo-

synthesis genes in cyanophages, the 

approach of studying model systems in 

the laboratory is a powerful one. Model 

systems allow characterization of critical 

modeling parameters (e.g., extent and 

mechanisms of host range, burst size, 

lytic period length), complete genome 

sequencing to map the capacity to which 

a given virus might influence ecosys-

tem processes, and, if genetic systems 

are available, functional assignments for 

unknown open reading frames. In par-

ticular, a synergistic, (meta)genomics-

enabled, model-virus-host systems 

approach can be used to evaluate 

the ecological roles and the extent of 

marine-viral diversity. Undoubtedly, 

as long as the model systems approach 

relies upon the culturability of organ-

isms (most marine microbes are resistant 

to culturing), then cautious extrapola-

tion of laboratory results to natural 

Figure 2. Schematic summarizing the potential roles of cyanophage-encoded “auxiliary metabolic genes” 
during infection of Prochlorococcus, a cyanobacterium. Three cellular metabolic pathways—photosynthe-
sis, the pentose-phosphate pathway, and nucleotide biosynthesis—combine to make nucleotides, criti-
cal precursors for DNA replication in both cyanobacteria and their viruses. Infecting viruses often carry 
genes for photosystem II proteins (psbA, psbD), transaldolase (talC), ribonucleotide reductase (nrdJ), and 
biosynthetic enzymes for making B12 (cobS), a cofactor of ribonucleotide reductase. When expressed dur-
ing infection, these genes may augment key steps in cellular metabolism, opening potential bottlenecks 
to increase nucleotide production, virus genomic DNA replication, and ultimately virus production.
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communities is warranted. 

Deep exploration of the diversity 

and ecosystem function of marine viral 

communities is a daunting yet excit-

ing task. Tremendous progress has 

been made using culture-based and 

signature-gene-based techniques, as 

well as through metagenomic surveys. 

Maximizing our interpretation of these 

rapidly growing metagenomic data sets 

will require an understanding of clon-

ing and amplification biases of current 

techniques, and it will also require efforts 

to isolate and characterize representa-

tive viral community members. Future 

challenges include the development 

of genetic tools for tracking all major 

marine groups (e.g., in situ hybridiza-

tion sequence-based assays using signa-

ture genes), the expansion of “snapshot” 

metagenomic characterizations to evalu-

ate the temporal and spatial dynamics of 

natural communities, and the develop-

ment of a robust theoretical framework 

to enhance our ability to model and 

predict the impacts of viruses on global 

ecosystem function. 

For further reading on marine viruses, 

see the following comprehensive reviews: 

Dunigan et al., 2006; Fuhrman, 1999; 

Proctor, 1997; Suttle, 2005; Weinbauer, 

2004; and Wommack and Colwell, 2000.
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