
Ecological Informatics 61 (2021) 101252

Available online 13 February 2021
1574-9541/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Deep learning for supervised classification of temporal data in ecology 

César Capinha a,*, Ana Ceia-Hasse b, Andrew M. Kramer c, Christiaan Meijer d 
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A B S T R A C T   

Temporal data is ubiquitous in ecology and ecologists often face the challenge of accurately differentiating these 
data into predefined classes, such as biological entities or ecological states. The usual approach consists of 
transforming the time series into user-defined features and then using these features as predictors in conventional 
statistical or machine learning models. Here we suggest the use of deep learning models as an alternative to this 
approach. Recent deep learning techniques can perform the classification directly from the time series, elimi
nating subjective and resource-consuming data transformation steps, and potentially improving classification 
results. We describe some of the deep learning architectures relevant for time series classification and show how 
these architectures and their hyper-parameters can be tested and used for the classification problems at hand. We 
illustrate the approach using three case studies from distinct ecological subdisciplines: i) insect species identi
fication from wingbeat spectrograms; ii) species distribution modelling from climate time series and iii) the 
classification of phenological phases from continuous meteorological data. The deep learning approach delivered 
ecologically sensible and accurate classifications demonstrating its potential for wide applicability across sub
fields of ecology.   

1. Introduction 

The recent increase in affordability, capacity, and autonomy of 
sensor-based technologies (Bush et al., 2017; Peters et al., 2014), as well 
as an increasing number of contributions from citizen scientists and the 
establishment of international research networks (Bush et al., 2017; 
Hurlbert and Liang, 2012), is allowing an unprecedented access to time 
series of interest for ecological research. A common aim of ecologists 
using these data concerns assigning them into predefined classes, such as 
ecological states or biological entities. Typical examples include the 
recognition of bird species from sound recordings (e.g. Priyadarshani 
et al., 2020), the distinction between phases in the annual life cycle of 
plants (i.e., ‘phenophases’) from spectral time series (Melaas et al., 
2013), or the recognition of behavioral states from animal movement 
data (Shamoun-Baranes et al., 2016). Many other examples exist, with 
scopes of application that range from the molecular level (Jaakkola 
et al., 2000) to the global scale (Schneider et al., 2010). 

The assignment of time series into one of two or more predefined 

classes (hereafter referred to as ‘time series classification’; Keogh and 
Kasetty, 2003) can be performed using a variety of different approaches, 
ranging from manual, expert-based, classification (Priyadarshani et al., 
2020) to fully automated procedures (see Bagnall et al., 2017 for ex
amples). In ecology, time series classification is generally approached by 
processing the time series data into a set of summary variables − using 
hand-designed transformations, or techniques such as Fourier or wavelet 
transforms − and then using these variables as predictors in ‘classical’ 
supervised classification algorithms, such as logistic or multinomial re
gressions or random forests (e.g. Capinha, 2019; Dyderski et al., 2018; 
Priyadarshani et al., 2020; Reside et al., 2010; Shamoun-Baranes et al., 
2016). In machine learning terminology, this approach is known as 
‘feature-based’, where the ‘features’ are the variables that are extracted 
to summarize the time series. 

Despite the wide adoption of feature-based approaches, important 
limitations still undermine their predictive performance and scalability. 
A key constraint concerns the need for domain-specific knowledge about 
the phenomenon that is being classified, to obtain ‘optimal’ sets of 
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spectrograms, which consist of frequency series of amplitudes (the 
predictor variable) obtained from Potamitis et al. (2015). A sample was 
composed of a total of 256 steps (frequencies), each step corresponding 
to an amplitude value for a frequency. This case study illustrates the use 
of these models using only one predictor variable (i.e., a single time 
series). 

The records of species identity data and predictor variable (ampli
tude per frequency) were split into: data for training candidate models 
(~50%; At), data for validating candidate models (~20%; Av), data for 
training the selected model (~70%; Bt; resulting from merging the two 
previous data sets), validation data for determining the number of 
epochs for training the selected model (~15%; Bv) and test data for final 
assessment of classification performance (~15%; T in Fig. 2). 

2.7.2. Case study 2: Species distribution model 
In this case study we predict the potential distribution of Galemys 

pyrenaicus (Iberian desman) using time series of environmental data. 
Galemys pyrenaicus is a vulnerable semi-aquatic species, endemic to the 
Iberian Peninsula and the Pyrenean Mountains. We collected distribu
tion records from the Portuguese and Spanish atlases of mammals 
(Bencatel et al., 2017; Palomo et al., 2007). The data consists of 6141 
UTM grid cells of 10 × 10 km, of which 659 record the species presence 
(class ‘Presence’) and 5482 its absence (class ‘Absence’). 

The environmental conditions in each cell were characterized using 
four variables: 1) maximum temperature; 2) minimum temperature, 3) 
accumulated precipitation, and 4) altitude. The first three variables 
consist of time series of monthly values collected from CHELSA (Karger 
et al., 2017) spanning 1989 to 2013, totaling 300 time steps. The fourth 
variable was from (Fick and Hijmans, 2017) and corresponds to 
temporally invariant values of altitude, coded as a time series. 

Species distribution data and predictors were split similarly as above 
with different proportions: a) At ~ 35%, b) Av ~ 35%, c) Bt ~ 70%; 
resulting from merging At and Av, d) Bv ~ 15%, and e) test data set T ~ 
15%. The low percentage of data used for training the candidate models 
in comparison to case study 1 aims to reduce computer processing time, 
given larger data volume. 

The training and internal validation of deep learning models are 
sensitive to strong class imbalance (i.e., when one or several classes have 
a much higher number of samples). Strong class imbalance can bias 
models towards the prediction of majority classes (Menardi and Torelli, 
2014) and reduces the reliability of performance metrics such as accu
racy sensu stricto (i.e., the proportion of correct predictions to the total 
number of samples), which is used for the automated selection of 
candidate models in mcfly (van Kuppevelt et al., 2020). Accordingly, we 
balanced our data by randomly duplicating presence records and de
leting absence records until a balance of ~50:50 is obtained, which was 
executed using the ROSE package (Lunardon et al., 2014) for R (R Core 
Team, 2020). This was done for the data sets that mcfly uses for internal 
assessment of accuracy s.s. (At, Av and Bt, Fig. 2). Data partitioning was 
performed prior to balancing, to avoid inclusion of replicated cases of 
the same data across multiple partitions. The remaining data sets (i.e., 
Bv and T) were not balanced. 

2.7.3. Case study 3: Phenological prediction 
In this case study we predict the timing of fruiting of Macrolepiota 

procera (Parasol mushroom) across Europe. This species produces 
fruiting bodies valued for human consumption (Capinha, 2019) and 
predicting their emergence could be useful for managing human pres
sure on the species and its habitats. Data is from Capinha (2019), a study 
employing a feature-based approach to achieve an equivalent aim. The 
data have two classes. One class (‘fruiting’) corresponds to locations and 
dates of observation of fruiting bodies of the species (from 2009 to 
2015). The second class corresponds to ‘temporal pseudo-absences’, 
which are records in the same locations of the observation records, but 
with dates selected at random along the temporal range of the study 
(Capinha, 2019). The aim of the classification is to distinguish the 

meteorological conditions associated with the observation of fruiting 
bodies of the species from the range of meteorological conditions that 
are available to it. 

We characterized each record using four time series: 1) mean daily 
temperature for the preceding 365 days, 2) daily total precipitation for 
the preceding 365 days, 3) latitude and 4) longitude. Time series of 
temperature and precipitation were extracted from the daily AGRI4
CAST maps (http://agri4cast.jrc.ec.europa.eu/), at a cell resolution of 
25 × 25 km. Geographical coordinates were coded as temporally 
invariant time series. 

Records from 2009 to 2014 were randomly partitioned into: At: 15%, 
Av: 70%, Bv: 15%, and Bt: 85% (merging At and Av). Data for the year 
2015 was used to evaluate the predictive performance of the final model 
(T), allowing comparison with the performance results achieved in 
Capinha (2019). 

To increase the representation of the meteorological conditions 
occurring in the location of each observation record, the data consists of 
15 pseudo-absence records per each observation record (Capinha, 
2019). Similarly to the previous case study, we corrected for class 
imbalance by balancing the number of samples in each class using a 
random deletion and duplication approach (Lunardon et al., 2014). This 
balancing was performed for data sets At, Av and Bt. 

3. Results 

3.1. Species identification 

The candidate model with greatest ability to distinguish between the 
spectrograms of the three insect wingbeats had an InceptionTime ar
chitecture (accuracy = 0.85; model number 15; Table 1; Fig. 3b). On the 
training data set this model showed a progressively increasing training 
accuracy with number of epochs (Fig. 3c). However, its evaluation 
against left-out data (Bv data set; Fig. 2) showed that best performances 
were found mainly between training epoch ~30 and ~50 (‘validation 
AUC’; Fig. 3c), followed by little change. The highest validation per
formance was obtained after 47 training epochs. On the test data (T; 
Fig. 2), this model achieved an average AUC of 0.96 (Table 1), resulting 
from an AUC of 1 in classifying between B. oleae and A. mellifera, an AUC 
of 0.88 in classifying between B. oleae and L. aristella and an AUC of 1 in 
classifying between A. mellifera and L. aristella. Computer processing 
time, from the onset of candidate model training to the 72nd training 
epoch of the selected model, took 26 min on a desktop PC. On the high- 
end workstation, a distinct modelling event took 3 min. 

3.2. Species distribution model 

The best performing candidate model for this case study had a CNN- 
type architecture (model number 4; Table 1; Fig. 4b), reaching 0.82 of 
validation accuracy. Using the full training data set, this model showed a 
decreasing trend in validation values after the ~60th epoch (Bv; ‘vali
dation AUC’; Fig. 4c), with highest performing classification at the 56th 
training epoch. The model trained with this number of epochs achieved 
an AUC of 0.95 (Table 1) on the final test data (T). Most of northern 
Iberian Peninsula was predicted as suitable to Galemys pyrenaicus, 
particularly the high mountainous areas (Fig. 4e). Computer processing 
time took 2 h and 49 min on a desktop PC. A distinct modelling event on 
the high-end workstation took 19 min. 

3.3. Phenological prediction 

For this case study, the selected candidate model had an 
InceptionTime-type of architecture (model number 2; Table 1; Fig. 5a), 
achieving 0.81 validation accuracy. The classification performance of 
this model (measured with external data; Bv) increased only up to the 
5th epoch (Fig. 5b). The model trained for 5 epochs achieved an AUC of 
0.91 on the final test data. The predicted probabilities of fruiting for an 
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example site (Fig. 5c) show the ability of the model to capturing seasonal 
variation, with higher probabilities generally being predicted for the 
Autumn season, but with important inter-annual differences. Computer 
processing time took 10 h and 23 min on a desktop PC. On a high-end 
workstation a distinct modelling event took 18 min. 

4. Discussion 

Deep artificial neural networks are a flexible modelling technique 
with notable success in a range of scientific fields (LeCun et al., 2015). In 
ecology, the adoption of these models is still in its infancy and has been 
mainly directed towards image and sound recognition (Brodrick et al., 
2019; Christin et al., 2019). We here introduce the use of deep learning 
models as a generic approach for the classification of temporal data and 
demonstrate how these models can be implemented and evaluated for 
distinct tasks across subfields of ecology. 

Our case studies demonstrate the versatility and potential of deep 
learning for time series classification. In the first case study, an Incep
tionTime model performed well in distinguishing insect species based on 
spectrograms of their wingbeats. Potamitis et al. (2015) classified the 

same data using the absolute distance of spectra. They found that this 
distance metric achieved a good accuracy in distinguishing between 
A. mellifera and B. oleae (an ‘easy’ classification case) but was unable to 
distinguish between the latter species and L. aristella (a ‘difficult’ clas
sification case). Given the use of different data partition strategies and 
performance metrics, the performances measured for our InceptionTime 
model are not fully comparable to those obtained by Potamitis et al. 
(2015). However, the deep learning approach correctly distinguished 
between all test instances of A. mellifera and B. oleae (AUC = 1) and was 
able to provide good classification performance for the more difficult 
classification case (AUC of 0.88), suggesting its superior classification 
ability. 

In our second case study, a CNN model was used to predict the po
tential distribution of Galemys pyrenaicus in the Iberian Peninsula, based 
on altitude values and time series of temperature and precipitation. This 
model achieved a high predictive performance (AUC = 0.95) and the 
spatial patterns predicted are congruent with the known distribution of 
the species and previous predictions of Barbosa et al. (2009) - who used 
a Generalized Linear Model and a rich set of spatial predictors repre
senting aspects of weather, climate, productivity, topography and 

Table 1 
Type of architecture and accuracy of candidate models and predictive performance of selected models (bold). The accuracy of candidate models was measured using 
the proportion of correctly classified cases. The accuracy of selected models was measured using the area under the receiver operating characteristic curve (AUC).  

Candidate 
model 

Architecture Accuracy of 
candidate 
models (% 
correct) 

AUC of 
selected 
model 

Architecture Accuracy of 
candidate 
models (% 
correct) 

AUC of 
selected 
model 

Architecture Accuracy of 
candidate 
models (% 
correct) 

AUC of 
selected 
model  

Case study 1 Case study 2 Case study 3 

1 ResNet 0.32  ResNet 0.67  ResNet 0.5  
2 InceptionTime 0.66  InceptionTime 0.63  InceptionTime 0.81 0.91 
3 LSTM 0.31  LSTM 0.52  LSTM 0.8  
4 CNN 0.7  CNN 0.82 0.95 CNN 0.69  
5 ResNet 0.46  ResNet 0.61  ResNet 0.5  
6 LSTM 0.32  LSTM 0.52  LSTM 0.81  
7 InceptionTime 0.57  InceptionTime 0.67  InceptionTime 0.76  
8 CNN 0.68  CNN 0.52  CNN 0.51  
9 CNN 0.39  CNN 0.48  CNN 0.5  
10 ResNet 0.32  ResNet 0.67  ResNet 0.49  
11 InceptionTime 0.32  InceptionTime 0.66  InceptionTime 0.5  
12 LSTM 0.39  LSTM 0.52  LSTM 0.75  
13 ResNet 0.32  ResNet 0.66  ResNet 0.5  
14 CNN 0.49  CNN 0.77  CNN 0.66  
15 InceptionTime 0.85 0.96 InceptionTime 0.67  InceptionTime 0.5  
16 LSTM 0.39  LSTM 0.52  LSTM 0.61  
17 CNN 0.6  CNN 0.52  CNN 0.5  
18 InceptionTime 0.79  InceptionTime 0.75  InceptionTime 0.51  
19 LSTM 0.36  LSTM 0.52  LSTM 0.77  
20 ResNet 0.42  ResNet 0.7  ResNet 0.5   

Fig. 3. Data and results of deep learning models classifying insect species from wingbeat spectrograms. (a) Example wingbeat spectrograms for each species. (b) 
Validation accuracy for candidate deep learning models. (c) Training and validation curves of the selected model along time (highest validation performance is 
marked with a diamond symbol). 
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geography. In addition, although the data and validation strategies used 
in the two studies differ, the predictive performance of the CNN 
matches, or surpasses the top performing Iberian models of Barbosa 
et al. (2009). These results suggest the competence of the deep learning 
approach for species distribution modelling. 

Finally, an InceptionTime model was used to predict the fruiting 
seasonality of Macrolepiota procera across Europe. The patterns of sea
sonality projected by the model were ecologically plausible and its 
predictive accuracy was high (i.e., an AUC of 0.91). This accuracy 

matches the one achieved by Capinha (2019), who used the same raw 
data. However, unlike the raw time series used by deep learning model, 
the study of Capinha (2019) used a feature-based classifier (boosted 
regression trees) and had to further process the time series data into a 
large set (n = 40) of hand-crafted features reliant on domain-expertise 
(e.g. averaged temperatures and accumulated precipitation in previous 
weeks or months, growing degree days etc.). These results suggest that 
deep-learning models may overcome the need of processing the time 
series data into summary variables and of domain experts to guide this 

Fig. 4. Data and results of deep learning models classifying environmental suitability for the Iberian desman. (a) Presence and absence data of the species. (b) 
Example of time series used as predictors. (c) Validation accuracy for candidate deep learning models. (d) Training and validation curves of the selected model along 
time. The diamond symbol marks the highest validation performance. (e) Environmental suitability predicted by the selected model. 

Fig. 5. Data and results of deep learning models classifying the fruiting phenology of the parasol mushroom based on meteorological variation. (a) Validation 
accuracy for candidate deep learning models. (b) Training and validation curves of the selected model along time (the diamond symbol marks the highest validation 
performance). (c) Patterns of fruiting seasonality predicted by the selected model for an example location. 
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process, without sacrificing predictive accuracy. 
Despite the promising results described above, the advantages of 

deep learning models for time series classification in ecology can only be 
fully appreciated with wider testing. The benchmarking of classification 
performances against traditional modelling approaches and the identi
fication of factors associated with performance differences (e.g. degree 
of a priori ecological knowledge; complexity of the phenomena; volume 
of training data, etc.) will be of paramount importance. Deep learning 
models often perform in a superior manner in benchmark tests in other 
domains (Fawaz et al., 2019) but is also not uncommon to find other 
approaches providing equivalent predictions (some examples are shown 
in Wang et al., 2017). Given the complexity and computational demand 
of deep learning models (see below), it will be important for ecologists to 
have a better sense of when this approach is justifiable over simpler, less 
demanding, alternatives. Research efforts should also attempt to identify 
the deep learning architectures and hyperparameters that are best suited 
for specific ecological phenomena and data types. Thus far, classification 
performances from distinct deep learning typologies were compared 
using time series data coming from multiple domains (e.g. Fawaz et al., 
2019), and the relevance of these results to ecology remains uncertain. 

Differently from feature-based approaches, deep learning ap
proaches allow classifying phenomena directly from raw time series 
data, a characteristic that requires ecologists to think more critically 
about the temporal component of the phenomena being classified. This 
increased relevance of the temporal dimension was, perhaps, best 
illustrated by using continuous climate data − instead of the usual long- 
term climate averages − for predicting the potential distribution of a 
species. However, the same sort of ‘fully’ temporally explicit approach 
can be exploited for virtually any ecological or biological entity or state, 
as long as the putative drivers have a temporal dimension. Further, the 
direct intake of time series data by deep learning models matches the 
increasing number of high frequency streams of digital data coming 
from distinct sources (e.g. satellite sensors, meteorological stations; 
Reichstein et al., 2019). The direct integration of these data into the 
models eliminates the need for resource consuming feature extraction 
procedures and is thus well-suited for operational modelling 
frameworks. 

As for any modelling approach, the use of deep learning models for 
time series classification has several limitations. Two are especially 
prominent: the interpretability of models and computational demand. 
The need for interpretability of deep learning models has been well 
emphasized in recent literature (e.g. Reichstein et al., 2019). Unfortu
nately, most research on this topic has focused on models working with 
image data (e.g. Selvaraju et al., 2017), while much less attention has 
been paid to the interpretation of models for time series classification, 
particularly those applied to multivariate data (Shickel and Rashidi, 
2020). Fortunately, a few techniques for interpreting the latter are 
beginning to emerge (e.g. Siddiqui et al., 2019) and, given the fast pace 
of deep learning research, we expect that soon deep learning models for 
time series classification will be no harder to interpret than those 
applied to image data. The challenges arising from computational de
mand appear harder to solve. Here we showed that ‘typical’ classifica
tion tasks can take several hours to run on a standard desktop computer. 
Additionally, the computational expensiveness of deep learning is ex
pected to grow in the future (Thompson et al., 2020). To face this 
challenge, ecologists will likely have to move in the same direction as 
their fellow computer scientists and embrace faster hardware (e.g. 
GPUs, ‘tensor processing units’ and large-resourced cloud computing 
services) and scalable model implementations (e.g. distributed 
computing). 

In conclusion, we consider that the use of deep learning for classi
fying temporal data in ecology could bring considerable improvements 
over conventional approaches. Software tools now exist that allow 
overcoming the implementation barrier for non-experts and state-of-the- 
art classification results seem a reasonable expectation for several tasks. 
However, only with extensive testing can the value of this approach be 

fully recognized. Those willing to venture through this modelling route 
could use the data and code we provide as a starting point. 
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